IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p3044-d1418714.html
   My bibliography  Save this article

Design of a Stochastic Electricity Market Mechanism with a High Proportion of Renewable Energy

Author

Listed:
  • Yifeng Liu

    (Hubei Power Exchange Center Co., Ltd., Wuhan 430040, China)

  • Meng Chen

    (Hubei Power Exchange Center Co., Ltd., Wuhan 430040, China)

  • Yuhong Fan

    (Institute of Economics and Technology, State Grid Hubei Electric Power Co., Ltd., Wuhan 430077, China)

  • Liming Ying

    (Hubei Key Laboratory of Power Equipment & System Security for Integrated Energy, School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Xue Cui

    (Hubei Key Laboratory of Power Equipment & System Security for Integrated Energy, School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Xuyue Zou

    (Hubei Key Laboratory of Power Equipment & System Security for Integrated Energy, School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

Abstract

Renewable energy, such as wind power and photovoltaic power, has uncertain and intermittent characteristics and zero marginal cost characteristics. The traditional power market mechanism is difficult to adapt to the new power system with a high proportion of renewable energy, and the original market system needs to be reformed. This paper discusses the application of a VCG auction mechanism in the electricity market, proposes a two-stage VCG market-clearing model based on the VCG mechanism, including the day-ahead market and the real-time market, and discusses the nature of the VCG mechanism. In order to address the discrepancy between the actual output of stochastic generator sets in the real-time market and their pre-scheduled output in the day-ahead market due to prediction deviations, a method for calculating punitive costs is proposed. A reallocation method based on market entities’ contributing factors to budget imbalance is proposed to address the issue of budget imbalance under the VCG mechanism, in order to achieve revenue and expenditure balance. Through an example, the incentive compatibility characteristics of the VCG mechanism are verified, the problems of the locational marginal pricing (LMP) mechanism in the stochastic electricity market with a high proportion of renewable energy are analyzed, the electricity prices of the LMP mechanism and the VCG mechanism under different renewable energy proportions are compared, and the redistribution of the budget imbalance of the VCG mechanism is analyzed.

Suggested Citation

  • Yifeng Liu & Meng Chen & Yuhong Fan & Liming Ying & Xue Cui & Xuyue Zou, 2024. "Design of a Stochastic Electricity Market Mechanism with a High Proportion of Renewable Energy," Energies, MDPI, vol. 17(12), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:3044-:d:1418714
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/3044/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/3044/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Che, Yeon-Koo & Condorelli, Daniele & Kim, Jinwoo, 2018. "Weak cartels and collusion-proof auctions," Journal of Economic Theory, Elsevier, vol. 178(C), pages 398-435.
    2. Greve, Thomas & Teng, Fei & Pollitt, Michael G. & Strbac, Goran, 2018. "A system operator’s utility function for the frequency response market," Applied Energy, Elsevier, vol. 231(C), pages 562-569.
    3. Peter Cramton, 2017. "Electricity market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 589-612.
    4. Pierre Pinson, 2023. "What may future electricity markets look like?," Papers 2302.02833, arXiv.org, revised Feb 2023.
    5. Hagen, Martin, 2023. "Collusion-proof mechanisms for multi-unit procurement," Games and Economic Behavior, Elsevier, vol. 138(C), pages 281-298.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    2. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 541-571.
    3. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    4. Asseyer, Andreas, 2020. "Collusion and delegation under information control," Discussion Papers 2020/3, Free University Berlin, School of Business & Economics.
    5. Kim, Eun-Hwan & Park, Yong-Gi & Roh, Jae Hyung, 2019. "Competitiveness of open-cycle gas turbine and its potential in the future Korean electricity market with high renewable energy mix," Energy Policy, Elsevier, vol. 129(C), pages 1056-1069.
    6. Peter Cramton, 2022. "Fostering Resiliency with Good Market Design: Lessons from Texas," ECONtribute Discussion Papers Series 145, University of Bonn and University of Cologne, Germany.
    7. Lyu, Chenyan & Do, Hung Xuan & Nepal, Rabindra & Jamasb, Tooraj, 2024. "Volatility spillovers and carbon price in the Nordic wholesale electricity markets," Energy Economics, Elsevier, vol. 134(C).
    8. Michael G. Pollitt & Karim L. Anaya, 2021. "Competition in Markets for Ancillary Services? The Implications of Rising Distributed Generation," The Energy Journal, , vol. 42(1_suppl), pages 1-28, June.
    9. Sylvain Chassang & Kei Kawai & Jun Nakabayashi & Juan Ortner, 2019. "Data Driven Regulation: Theory and Application to Missing Bids," Boston University - Department of Economics - Working Papers Series WP2019-04, Boston University - Department of Economics.
    10. Martin Bichler & Johannes Knörr & Felipe Maldonado, 2023. "Pricing in Nonconvex Markets: How to Price Electricity in the Presence of Demand Response," Information Systems Research, INFORMS, vol. 34(2), pages 652-675, June.
    11. Peng Hao & Jun-Peng Guo & Eoghan O’Neill & Yong-Heng Shi, 2023. "When Will First-Price Work Well? The Impact of Anti-Corruption Rules on Photovoltaic Power Generation Procurement Auctions," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    12. Peter Cramton & Emmanuele Bobbio & David Malec & Pat Sujarittanonta, 2022. "Electricity Markets in Transition: A Multi-Decade Micro-Model of Entry and Exit in Advanced Wholesale Markets," ECONtribute Discussion Papers Series 183, University of Bonn and University of Cologne, Germany.
    13. Mier, Mathias, 2021. "Efficient pricing of electricity revisited," Energy Economics, Elsevier, vol. 104(C).
    14. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
    15. Boldrini, A. & Jiménez Navarro, J.P. & Crijns-Graus, W.H.J. & van den Broek, M.A., 2022. "The role of district heating systems to provide balancing services in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    16. Micha Kahlen & Karsten Schroer & Wolfgang Ketter & Alok Gupta, 2024. "Smart Markets for Real-Time Allocation of Multiproduct Resources: The Case of Shared Electric Vehicles," Information Systems Research, INFORMS, vol. 35(2), pages 871-889, June.
    17. Deakin, Matthew & Bloomfield, Hannah & Greenwood, David & Sheehy, Sarah & Walker, Sara & Taylor, Phil C., 2021. "Impacts of heat decarbonization on system adequacy considering increased meteorological sensitivity," Applied Energy, Elsevier, vol. 298(C).
    18. Fuat Oğuz, 2020. "Hayekian complexity and the role of regulation in electricity markets," Economic Affairs, Wiley Blackwell, vol. 40(3), pages 406-418, October.
    19. Richstein, Jörn C. & Lorenz, Casimir & Neuhoff, Karsten, 2020. "An auction story: How simple bids struggle with uncertainty," Energy Economics, Elsevier, vol. 89(C).
    20. Thomas Pownall & Iain Soutar & Catherine Mitchell, 2021. "Re-Designing GB’s Electricity Market Design: A Conceptual Framework Which Recognises the Value of Distributed Energy Resources," Energies, MDPI, vol. 14(4), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:3044-:d:1418714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.