IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1150-d1028395.html
   My bibliography  Save this article

Performance Analysis of Classification and Detection for PV Panel Motion Blur Images Based on Deblurring and Deep Learning Techniques

Author

Listed:
  • Abdullah Ahmed Al-Dulaimi

    (Department of Electrical and Electronics Engineering, Karabuk University, Karabuk 78050, Turkey)

  • Muhammet Tahir Guneser

    (Department of Electrical and Electronics Engineering, Karabuk University, Karabuk 78050, Turkey)

  • Alaa Ali Hameed

    (Department of Computer Engineering, Istinye University, Istanbul 34396, Turkey)

  • Fausto Pedro García Márquez

    (Ingenium Research Group, University of Castilla-La Mancha, 13071 Ciudad Real, Spain)

  • Norma Latif Fitriyani

    (Department of Data Science, Sejong University, Seoul 05006, Republic of Korea)

  • Muhammad Syafrudin

    (Department of Artificial Intelligence, Sejong University, Seoul 05006, Republic of Korea)

Abstract

Detecting snow-covered solar panels is crucial as it allows us to remove snow using heating techniques more efficiently and restores the photovoltaic system to proper operation. This paper presents classification and detection performance analyses for snow-covered solar panel images. The classification analysis consists of two cases, and the detection analysis consists of one case based on three backbones. In this study, five deep learning models, namely visual geometry group-16 (VGG-16), VGG-19, residual neural network-18 (RESNET-18), RESNET-50, and RESNET-101, are used to classify solar panel images. The models are trained, validated, and tested under different conditions. The first case of classification is performed on the original dataset without preprocessing. In the second case, extreme climate conditions are simulated by generating motion noise; furthermore, the dataset is replicated using the upsampling technique to handle the unbalancing issue. For the detection case, a region-based convolutional neural network (RCNN) detector is used to detect the three categories of solar panels, which are all_snow, no_snow, and partial. The dataset of these categories is taken from the second case in the classification approach. Finally, we proposed a blind image deblurring algorithm (BIDA) that can be a preprocessing step before the CNN (BIDA-CNN) model. The accuracy of the models was compared and verified; the accuracy results show that the proposed CNN-based blind image deblurring algorithm (BIDA-CNN) outperformed other models evaluated in this study.

Suggested Citation

  • Abdullah Ahmed Al-Dulaimi & Muhammet Tahir Guneser & Alaa Ali Hameed & Fausto Pedro García Márquez & Norma Latif Fitriyani & Muhammad Syafrudin, 2023. "Performance Analysis of Classification and Detection for PV Panel Motion Blur Images Based on Deblurring and Deep Learning Techniques," Sustainability, MDPI, vol. 15(2), pages 1-32, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1150-:d:1028395
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1150/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1150/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sharma, Vikrant & Chandel, S.S., 2013. "Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 753-767.
    2. Jacek Starzyński & Paweł Zawadzki & Dariusz Harańczyk, 2022. "Machine Learning in Solar Plants Inspection Automation," Energies, MDPI, vol. 15(16), pages 1-21, August.
    3. Hayibo, Koami Soulemane & Petsiuk, Aliaksei & Mayville, Pierce & Brown, Laura & Pearce, Joshua M., 2022. "Monofacial vs bifacial solar photovoltaic systems in snowy environments," Renewable Energy, Elsevier, vol. 193(C), pages 657-668.
    4. Gabriele C. Eder & Yuliya Voronko & Christina Hirschl & Rita Ebner & Gusztáv Újvári & Wolfgang Mühleisen, 2018. "Non-Destructive Failure Detection and Visualization of Artificially and Naturally Aged PV Modules," Energies, MDPI, vol. 11(5), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    2. Atsu, Divine & Seres, Istvan & Aghaei, Mohammadreza & Farkas, Istvan, 2020. "Analysis of long-term performance and reliability of PV modules under tropical climatic conditions in sub-Saharan," Renewable Energy, Elsevier, vol. 162(C), pages 285-295.
    3. Vimpari, Jussi & Junnila, Seppo, 2017. "Evaluating decentralized energy investments: Spatial value of on-site PV electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1217-1222.
    4. Kahoul, Nabil & Chenni, Rachid & Cheghib, Hocine & Mekhilef, Saad, 2017. "Evaluating the reliability of crystalline silicon photovoltaic modules in harsh environment," Renewable Energy, Elsevier, vol. 109(C), pages 66-72.
    5. Tsanakas, John A. & Ha, Long D. & Al Shakarchi, F., 2017. "Advanced inspection of photovoltaic installations by aerial triangulation and terrestrial georeferencing of thermal/visual imagery," Renewable Energy, Elsevier, vol. 102(PA), pages 224-233.
    6. Essah, Emmanuel A. & Rodriguez Arguelles, Ana & Glover, Neil, 2015. "Assessing the performance of a building integrated BP c-Si PV system," Renewable Energy, Elsevier, vol. 73(C), pages 36-45.
    7. Figgis, Benjamin & Ennaoui, Ahmed & Ahzi, Said & Rémond, Yves, 2017. "Review of PV soiling particle mechanics in desert environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 872-881.
    8. Akinyele, D.O. & Rayudu, R.K., 2016. "Community-based hybrid electricity supply system: A practical and comparative approach," Applied Energy, Elsevier, vol. 171(C), pages 608-628.
    9. Chandel, S.S. & Nagaraju Naik, M. & Sharma, Vikrant & Chandel, Rahul, 2015. "Degradation analysis of 28 year field exposed mono-c-Si photovoltaic modules of a direct coupled solar water pumping system in western Himalayan region of India," Renewable Energy, Elsevier, vol. 78(C), pages 193-202.
    10. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    11. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    12. Cai, Baoping & Liu, Yonghong & Ma, Yunpeng & Huang, Lei & Liu, Zengkai, 2015. "A framework for the reliability evaluation of grid-connected photovoltaic systems in the presence of intermittent faults," Energy, Elsevier, vol. 93(P2), pages 1308-1320.
    13. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    14. João Gomes, 2019. "Assessment of the Impact of Stagnation Temperatures in Receiver Prototypes of C-PVT Collectors," Energies, MDPI, vol. 12(15), pages 1-20, August.
    15. Kyoik Choi & Jangwon Suh, 2023. "Fault Detection and Power Loss Assessment for Rooftop Photovoltaics Installed in a University Campus, by Use of UAV-Based Infrared Thermography," Energies, MDPI, vol. 16(11), pages 1-16, June.
    16. Kim, Byungil & Kim, Changyoon, 2018. "Estimating the effect of module failures on the gross generation of a photovoltaic system using agent-based modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1019-1024.
    17. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    18. Akinyele, D.O. & Rayudu, R.K. & Nair, N.K.C., 2015. "Global progress in photovoltaic technologies and the scenario of development of solar panel plant and module performance estimation − Application in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 112-139.
    19. Yilmaz, Saban & Ozcalik, Hasan Riza & Kesler, Selami & Dincer, Furkan & Yelmen, Bekir, 2015. "The analysis of different PV power systems for the determination of optimal PV panels and system installation—A case study in Kahramanmaras, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1015-1024.
    20. Triki-Lahiani, Asma & Bennani-Ben Abdelghani, Afef & Slama-Belkhodja, Ilhem, 2018. "Fault detection and monitoring systems for photovoltaic installations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2680-2692.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1150-:d:1028395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.