IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2935-d1415059.html
   My bibliography  Save this article

Model Characterization of High-Voltage Layer Heater for Electric Vehicles through Electro–Thermo–Fluidic Simulations

Author

Listed:
  • Kwon Joong Son

    (Department of Mechanical and Design Engineering, Hongik University, Sejong 30016, Republic of Korea)

Abstract

This paper focuses on the modeling and analysis of a high-voltage layer heater (HVLH) designed for environmentally friendly vehicles, including electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs), through multiphysics simulations that cover electrical, thermal, and fluid dynamics aspects. Due to the significant expenses and extensive time needed for producing and experimentally characterizing HVLHs, simulation and physical modeling methods are favored in the development stage. This research pioneers the separate modeling of thermal boundary conditions for the heating element (TFE) within the electrical domain, enabling the calculation of Joule heating and the analysis of transient conjugate heat transfer. Moreover, this research initiates the application of transfer function modeling for the HVLH component, expanding its use to the broader context of heating, ventilation, and air conditioning (HVAC) systems. The simulation results, which include calculations for Joule heating and temperature fields based on input voltage and flow conditions, closely follow experimental data. The derived transfer function, along with the regression parameters, precisely predicts the dynamic behavior of the system. The simulation-based modeling approach presented in this study significantly advances the design and control of environmentally friendly electric heating systems, providing a sustainable and cost-effective solution.

Suggested Citation

  • Kwon Joong Son, 2024. "Model Characterization of High-Voltage Layer Heater for Electric Vehicles through Electro–Thermo–Fluidic Simulations," Energies, MDPI, vol. 17(12), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2935-:d:1415059
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2935/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2935/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dominik Dvorak & Daniele Basciotti & Imre Gellai, 2020. "Demand-Based Control Design for Efficient Heat Pump Operation of Electric Vehicles," Energies, MDPI, vol. 13(20), pages 1-18, October.
    2. Daniele Basciotti & Dominik Dvorak & Imre Gellai, 2020. "A Novel Methodology for Evaluating the Impact of Energy Efficiency Measures on the Cabin Thermal Comfort of Electric Vehicles," Energies, MDPI, vol. 13(15), pages 1-16, July.
    3. Kwon Joong Son, 2023. "Thermo-Electro-Fluidic Simulation Study of Impact of Blower Motor Heat on Performance of Peltier Cooler for Protective Clothing," Energies, MDPI, vol. 16(10), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivan Cvok & Igor Ratković & Joško Deur, 2021. "Multi-Objective Optimisation-Based Design of an Electric Vehicle Cabin Heating Control System for Improved Thermal Comfort and Driving Range," Energies, MDPI, vol. 14(4), pages 1-24, February.
    2. Alexander Wahl & Christoph Wellmann & Björn Krautwig & Patrick Manns & Bicheng Chen & Christof Schernus & Jakob Andert, 2022. "Efficiency Increase through Model Predictive Thermal Control of Electric Vehicle Powertrains," Energies, MDPI, vol. 15(4), pages 1-21, February.
    3. Ivan Cvok & Igor Ratković & Joško Deur, 2020. "Optimisation of Control Input Allocation Maps for Electric Vehicle Heat Pump-based Cabin Heating Systems," Energies, MDPI, vol. 13(19), pages 1-23, October.
    4. Ko, Jaedeok & Jeong, Ji Hwan, 2024. "Status and challenges of vapor compression air conditioning and heat pump systems for electric vehicles," Applied Energy, Elsevier, vol. 375(C).
    5. Zhang, Nan & Lu, Yiji & Ouderji, Zahra Hajabdollahi & Yu, Zhibin, 2023. "Review of heat pump integrated energy systems for future zero-emission vehicles," Energy, Elsevier, vol. 273(C).
    6. Ju Yeong Kwon & Jung Kyung Kim & Hyunjin Lee & Dongchan Lee & Da Young Ju, 2023. "A Comprehensive Overview of Basic Research on Human Thermal Management in Future Mobility: Considerations, Challenges, and Methods," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    7. Gian Luca Patrone & Elena Paffumi & Marcos Otura & Mario Centurelli & Christian Ferrarese & Steffen Jahn & Andreas Brenner & Bernd Thieringer & Daniel Braun & Thomas Hoffmann, 2022. "Assessing the Energy Consumption and Driving Range of the QUIET Project Demonstrator Vehicle," Energies, MDPI, vol. 15(4), pages 1-21, February.
    8. Zakariya Kaneesamkandi & Abdulaziz Almujahid & Basharat Salim & Abdul Sayeed & Waleed Mohammed AlFadda, 2023. "Enhancement of Condenser Performance in Vapor Absorption Refrigeration Systems Operating in Arid Climatic Zones—Selection of Best Option," Energies, MDPI, vol. 16(21), pages 1-18, November.
    9. Simone Lombardi & Manfredi Villani & Daniele Chiappini & Laura Tribioli, 2020. "Cooling System Energy Consumption Reduction through a Novel All-Electric Powertrain Traction Module and Control Optimization," Energies, MDPI, vol. 14(1), pages 1-22, December.
    10. Adam Wróblewski & Arkadiusz Macek & Aleksandra Banasiewicz & Sebastian Gola & Maciej Zawiślak & Anna Janicka, 2023. "CFD Analysis of the Forced Airflow and Temperature Distribution in the Air-Conditioned Operator’s Cabin of the Stationary Rock Breaker in Underground Mine under Increasing Heat Flux," Energies, MDPI, vol. 16(9), pages 1-18, April.
    11. Dominik Dvorak & Daniele Basciotti & Imre Gellai, 2020. "Demand-Based Control Design for Efficient Heat Pump Operation of Electric Vehicles," Energies, MDPI, vol. 13(20), pages 1-18, October.
    12. Ivan Panfilov & Alexey N. Beskopylny & Besarion Meskhi, 2024. "Improving the Fuel Economy and Energy Efficiency of Train Cab Climate Systems, Considering Air Recirculation Modes," Energies, MDPI, vol. 17(9), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2935-:d:1415059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.