IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2847-d1411875.html
   My bibliography  Save this article

Performance Analysis of Vermiculite–Potassium Carbonate Composite Materials for Efficient Thermochemical Energy Storage

Author

Listed:
  • Jianquan Lin

    (Urban Construction College, Changzhou University, Changzhou 213164, China)

  • Qian Zhao

    (Urban Construction College, Changzhou University, Changzhou 213164, China)

  • Haotian Huang

    (Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201899, China)

Abstract

In this study, the preparation of the composite material consisting of expanded vermiculite (EV) and potassium carbonate (K 2 CO 3 ) was conducted using a solution impregnation method. Sorption and desorption experiments were undertaken to investigate the dynamic and thermodynamic properties of the EV/K 2 CO 3 composites with varying salt contents. The findings suggest that the EV/K 2 CO 3 composites effectively address the issues of solution leakage resulting from the deliquescence and excessive hydration of pure K 2 CO 3 salt, thereby substantially improving the water sorption capacity and overall stability of the composite materials. The salt content plays a vital role in the sorption and desorption processes of EV/K 2 CO 3 composites. As the salt content rises, the resistance to sorption mass transfer increases, resulting in a decline in the average sorption rate. Concurrently, as the salt content increases, there is a corresponding increase in the average desorption rate, water uptake, and heat storage density. Specifically, at a temperature of 30 °C and a relative humidity of 60%, the EVPC 40 composite with a salt content of 67.4% demonstrates water uptake, mass energy density, and volumetric energy density values of 0.68 g/g, 1633.6 kJ/kg, and 160 kWh/m 3 , respectively. In comparison to pure K 2 CO 3 salt, the utilization of EV/K 2 CO 3 composites under identical heat demand conditions results in a 57% reduction in the required reaction material. This study offers essential empirical evidence and theoretical backing for the utilization and development of EV/K 2 CO 3 composites within thermochemical energy storage systems.

Suggested Citation

  • Jianquan Lin & Qian Zhao & Haotian Huang, 2024. "Performance Analysis of Vermiculite–Potassium Carbonate Composite Materials for Efficient Thermochemical Energy Storage," Energies, MDPI, vol. 17(12), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2847-:d:1411875
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2847/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2847/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Donkers, P.A.J. & Sögütoglu, L.C. & Huinink, H.P. & Fischer, H.R. & Adan, O.C.G., 2017. "A review of salt hydrates for seasonal heat storage in domestic applications," Applied Energy, Elsevier, vol. 199(C), pages 45-68.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geraint Sullivan & Chris Griffiths & Eifion Jewell & Justin Searle & Jonathon Elvins, 2023. "Cycling Stability of Calcium-Impregnated Vermiculite in Open Reactor Used as a Thermochemical Storage Material," Energies, MDPI, vol. 16(21), pages 1-12, October.
    2. Shkatulov, A.I. & Houben, J. & Fischer, H. & Huinink, H.P., 2020. "Stabilization of K2CO3 in vermiculite for thermochemical energy storage," Renewable Energy, Elsevier, vol. 150(C), pages 990-1000.
    3. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2020. "Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage," Renewable Energy, Elsevier, vol. 157(C), pages 920-940.
    4. Hu, Yige & Wang, Hang & Chen, Hu & Ding, Yang & Liu, Changtian & Jiang, Feng & Ling, Xiang, 2023. "A novel hydrated salt-based phase change material for medium- and low-thermal energy storage," Energy, Elsevier, vol. 274(C).
    5. Zhang, Yannan & Yan, Taisen & Wang, Ruzhu, 2024. "A new strategy of dual-material reactors for stable thermal output of sorption thermal battery," Energy, Elsevier, vol. 293(C).
    6. Gao, J.T. & Xu, Z.Y. & Wang, R.Z., 2020. "Experimental study on a double-stage absorption solar thermal storage system with enhanced energy storage density," Applied Energy, Elsevier, vol. 262(C).
    7. Isye Hayatina & Amar Auckaili & Mohammed Farid, 2023. "Review on Salt Hydrate Thermochemical Heat Transformer," Energies, MDPI, vol. 16(12), pages 1-23, June.
    8. Pujari, Ankush Shankar & Majumdar, Rudrodip & Saha, Sandip K. & Subramaniam, Chandramouli, 2023. "Annular vertical cylindrical thermochemical storage system with innovative flow arrangements for improved heat dispatch towards space heating requirements," Renewable Energy, Elsevier, vol. 217(C).
    9. Chate, Akshay & Sharma, Rakesh & S, Srinivasa Murthy & Dutta, Pradip, 2022. "Studies on a potassium carbonate salt hydrate based thermochemical energy storage system," Energy, Elsevier, vol. 258(C).
    10. Yujie Su & Yi Yang & Guoqing He & Renhua Liu & De Ding, 2024. "Two-Stage Solar–NaOH Thermochemical Heat Pump Heating System for Building Heating: Operations Strategies and Theoretical Performance," Energies, MDPI, vol. 17(8), pages 1-16, April.
    11. Mamani, V. & Gutiérrez, A. & Fernández, A.I. & Ushak, S., 2020. "Industrial carnallite-waste for thermochemical energy storage application," Applied Energy, Elsevier, vol. 265(C).
    12. Han, Xiaojing & Liu, Shuli & Zeng, Cheng & Yang, Liu & Shukla, Ashish & Shen, Yongliang, 2020. "Investigating the performance enhancement of copper fins on trapezoidal thermochemical reactor," Renewable Energy, Elsevier, vol. 150(C), pages 1037-1046.
    13. Romaní, Joaquim & Gasia, Jaume & Solé, Aran & Takasu, Hiroki & Kato, Yukitaka & Cabeza, Luisa F., 2019. "Evaluation of energy density as performance indicator for thermal energy storage at material and system levels," Applied Energy, Elsevier, vol. 235(C), pages 954-962.
    14. Mukherjee, Ankit & Pujari, Ankush Shankar & Shinde, Shraddha Nitin & Kashyap, Uddip & Kumar, Lalit & Subramaniam, Chandramouli & Saha, Sandip K., 2022. "Performance assessment of open thermochemical energy storage system for seasonal space heating in highly humid environment," Renewable Energy, Elsevier, vol. 201(P1), pages 204-223.
    15. Bryan Li & Louise Buisson & Ruby-Jean Clark & Svetlana Ushak & Mohammed Farid, 2024. "A Eutectic Mixture of Calcium Chloride Hexahydrate and Bischofite with Promising Performance for Thermochemical Energy Storage," Energies, MDPI, vol. 17(3), pages 1-18, January.
    16. Pim Donkers & Kun Gao & Jelle Houben & Henk Huinink & Bart Erich & Olaf Adan, 2020. "Effect of Non-Condensable Gasses on the Performance of a Vacuum Thermochemical Reactor," Energies, MDPI, vol. 13(2), pages 1-24, January.
    17. Wang, L.W. & Jiang, L. & Gao, J. & Gao, P. & Wang, R.Z., 2017. "Analysis of resorption working pairs for air conditioners of electric vehicles," Applied Energy, Elsevier, vol. 207(C), pages 594-603.
    18. N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric, 2021. "A reality check on long-term thermochemical heat storage for household applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    19. Rozeline Wijnhorst & Menno Demmenie & Etienne Jambon-Puillet & Freek Ariese & Daniel Bonn & Noushine Shahidzadeh, 2023. "Softness of hydrated salt crystals under deliquescence," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    20. Edyta Nartowska & Marta Styś-Maniara & Tomasz Kozłowski, 2023. "The Potential Environmental and Social Influence of the Inorganic Salt Hydrates Used as a Phase Change Material for Thermal Energy Storage in Solar Installations," IJERPH, MDPI, vol. 20(2), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2847-:d:1411875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.