IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2815-d1411014.html
   My bibliography  Save this article

Quantifying Emissions in Vehicles Equipped with Energy-Saving Start–Stop Technology: THC and NOx Modeling Insights

Author

Listed:
  • Maksymilian Mądziel

    (Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

Abstract

Creating accurate emission models capable of capturing the variability and dynamics of modern propulsion systems is crucial for future mobility planning. This paper presents a methodology for creating THC and NOx emission models for vehicles equipped with start–stop technology. A key aspect of this endeavor is to find techniques that accurately replicate the engine’s stop stages when there are no emissions. To this end, several machine learning techniques were tested using the Python programming language. Random forest and gradient boosting methods demonstrated the best predictive capabilities for THC and NOx emissions, achieving R 2 scores of approximately 0.9 for engine emissions. Additionally, recommendations for effective modeling of such emissions from vehicles are presented in the paper.

Suggested Citation

  • Maksymilian Mądziel, 2024. "Quantifying Emissions in Vehicles Equipped with Energy-Saving Start–Stop Technology: THC and NOx Modeling Insights," Energies, MDPI, vol. 17(12), pages 1-25, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2815-:d:1411014
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2815/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2815/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Paulo, Alex Fabianne & Nunes, Breno & Porto, Geciane, 2020. "Emerging green technologies for vehicle propulsion systems," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    2. Maria Luisa Tumminello & Elżbieta Macioszek & Anna Granà & Tullio Giuffrè, 2023. "A Methodological Framework to Assess Road Infrastructure Safety and Performance Efficiency in the Transition toward Cooperative Driving," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    3. Yu, Xiao & Sandhu, Navjot S. & Yang, Zhenyi & Zheng, Ming, 2020. "Suitability of energy sources for automotive application – A review," Applied Energy, Elsevier, vol. 271(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Luisa Tumminello & Elżbieta Macioszek & Anna Granà, 2024. "Insights into Simulated Smart Mobility on Roundabouts: Achievements, Lessons Learned, and Steps Ahead," Sustainability, MDPI, vol. 16(10), pages 1-33, May.
    2. Liaw, Kim Leong & Ong, Khai Chuin & Mohd Ali Zar, Muhammad Aliff B. & Lai, Wen Kang & Muhammad, M. Fadhli B. & Firmansyah, & Kurnia, Jundika C., 2023. "Experimental and numerical investigation of an innovative non-combustion impulse gas turbine for micro-scale electricity generation," Energy, Elsevier, vol. 266(C).
    3. Zongyu Yue & Haifeng Liu, 2023. "Advanced Research on Internal Combustion Engines and Engine Fuels," Energies, MDPI, vol. 16(16), pages 1-8, August.
    4. Lu, Dagang & Yi, Fengyan & Hu, Donghai & Li, Jianwei & Yang, Qingqing & Wang, Jing, 2023. "Online optimization of energy management strategy for FCV control parameters considering dual power source lifespan decay synergy," Applied Energy, Elsevier, vol. 348(C).
    5. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.
    6. Nazanin Zare & Elżbieta Macioszek & Anna Granà & Tullio Giuffrè, 2024. "Blending Efficiency and Resilience in the Performance Assessment of Urban Intersections: A Novel Heuristic Informed by Literature Review," Sustainability, MDPI, vol. 16(6), pages 1-24, March.
    7. Liaw, Kim Leong & Kurnia, Jundika C. & Lai, Wen Kang & Ong, Khai Chuin & Zar, Muhammad Aliff B. Mohd Ali & Muhammad, M. Fadhli B. & Firmansyah,, 2023. "Optimization of a novel impulse gas turbine nozzle and blades design utilizing Taguchi method for micro-scale power generation," Energy, Elsevier, vol. 282(C).
    8. Korberg, A.D. & Brynolf, S. & Grahn, M. & Skov, I.R., 2021. "Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    9. Junhee Kang & Sehyun Tak & Sungjin Park, 2023. "Analyzing the Impact of C-ITS Services on Driving Behavior: A Case Study of the Daejeon–Sejong C-ITS Pilot Project in South Korea," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    10. Shu, Zhiyong & Liang, Wenqing & Liu, Fan & Lei, Gang & Zheng, Xiaohong & Qian, Hua, 2022. "Diffusion characteristics of liquid hydrogen spills in a crossflow field: Prediction model and experiment," Applied Energy, Elsevier, vol. 323(C).
    11. Maria Luisa Tumminello & Elżbieta Macioszek & Anna Granà & Tullio Giuffrè, 2023. "Evaluating Traffic-Calming-Based Urban Road Design Solutions Featuring Cooperative Driving Technologies in Energy Efficiency Transition for Smart Cities," Energies, MDPI, vol. 16(21), pages 1-28, October.
    12. Aissa Benhammou & Hamza Tedjini & Mohammed Amine Hartani & Rania M. Ghoniem & Ali Alahmer, 2023. "Accurate and Efficient Energy Management System of Fuel Cell/Battery/Supercapacitor/AC and DC Generators Hybrid Electric Vehicles," Sustainability, MDPI, vol. 15(13), pages 1-27, June.
    13. Andriana G. Dimakopoulou & Nikos Chatzistamoulou & Kostas Kounetas & Kostas Tsekouras, 2023. "Environmental innovation and R&D collaborations: Firm decisions in the innovation efficiency context," The Journal of Technology Transfer, Springer, vol. 48(4), pages 1176-1205, August.
    14. Marceli Adriane Schvartz & Amanda Lange Salvia & Luciana Londero Brandli & Walter Leal Filho & Lucas Veiga Avila, 2024. "The Electric Vehicle Market in Brazil: A Systematic Literature Review of Factors Influencing Purchase Decisions," Sustainability, MDPI, vol. 16(11), pages 1-23, May.
    15. Charles Lincoln Kenji Yamamura & Harmi Takiya & Cláudia Aparecida Soares Machado & José Carlos Curvelo Santana & José Alberto Quintanilha & Fernando Tobal Berssaneti, 2022. "Electric Cars in Brazil: An Analysis of Core Green Technologies and the Transition Process," Sustainability, MDPI, vol. 14(10), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2815-:d:1411014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.