IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2618-d1404534.html
   My bibliography  Save this article

On Predicting Offshore Hub Height Wind Speed and Wind Power Density in the Northeast US Coast Using High-Resolution WRF Model Configurations during Anticyclones Coinciding with Wind Drought

Author

Listed:
  • Tasnim Zaman

    (Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269, USA)

  • Timothy W. Juliano

    (Research Applications Laboratory, National Center for Atmospheric Research (NCAR), Boulder, CO 80307, USA)

  • Patrick Hawbecker

    (ArcVera Renewables, Golden, CO 80401, USA)

  • Marina Astitha

    (Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269, USA
    Research Applications Laboratory, National Center for Atmospheric Research (NCAR), Boulder, CO 80307, USA)

Abstract

We investigated the predictive capability of various configurations of the Weather Research and Forecasting (WRF) model version 4.4, to predict hub height offshore wind speed and wind power density in the Northeast US wind farm lease areas. The selected atmospheric conditions were high-pressure systems (anticyclones) coinciding with wind speed below the cut-in wind turbine threshold. There are many factors affecting the potential of offshore wind power generation, one of them being low winds, namely wind droughts, that have been present in future climate change scenarios. The efficiency of high-resolution hub height wind prediction for such events has not been extensively investigated, even though the anticipation of such events will be important in our increased reliance on wind and solar power resources in the near future. We used offshore wind observations from the Woods Hole Oceanographic Institution’s (WHOI) Air–Sea Interaction Tower (ASIT) located south of Martha’s Vineyard to assess the impact of the initial and boundary conditions, number of model vertical levels, and inclusion of high-resolution sea surface temperature (SST) fields. Our focus has been on the influence of the initial and boundary conditions (ICBCs), SST, and model vertical layers. Our findings showed that the ICBCs exhibited the strongest influence on hub height wind predictions above all other factors. The NAM/WRF and HRRR/WRF were able to capture the decreased wind speed, and there was no single configuration that systematically produced better results. However, when using the predicted wind speed to estimate the wind power density, the HRRR/WRF had statistically improved results, with lower errors than the NAM/WRF. Our work underscored that for predicting offshore wind resources, it is important to evaluate not only the WRF predictive wind speed, but also the connection of wind speed to wind power.

Suggested Citation

  • Tasnim Zaman & Timothy W. Juliano & Patrick Hawbecker & Marina Astitha, 2024. "On Predicting Offshore Hub Height Wind Speed and Wind Power Density in the Northeast US Coast Using High-Resolution WRF Model Configurations during Anticyclones Coinciding with Wind Drought," Energies, MDPI, vol. 17(11), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2618-:d:1404534
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2618/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2618/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Costoya, X. & deCastro, M. & Carvalho, D. & Gómez-Gesteira, M., 2020. "On the suitability of offshore wind energy resource in the United States of America for the 21st century," Applied Energy, Elsevier, vol. 262(C).
    2. Zhenzhong Zeng & Alan D. Ziegler & Timothy Searchinger & Long Yang & Anping Chen & Kunlu Ju & Shilong Piao & Laurent Z. X. Li & Philippe Ciais & Deliang Chen & Junguo Liu & Cesar Azorin-Molina & Adria, 2019. "A reversal in global terrestrial stilling and its implications for wind energy production," Nature Climate Change, Nature, vol. 9(12), pages 979-985, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Christopher & Schindler, Dirk, 2022. "A review of recent studies on wind resource projections under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. Wang, Huaizhi & Liu, Yangyang & Zhou, Bin & Voropai, Nikolai & Cao, Guangzhong & Jia, Youwei & Barakhtenko, Evgeny, 2020. "Advanced adaptive frequency support scheme for DFIG under cyber uncertainty," Renewable Energy, Elsevier, vol. 161(C), pages 98-109.
    3. Zhang, Shuangyi & Li, Xichen, 2021. "Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method," Energy, Elsevier, vol. 217(C).
    4. Vu Dinh, Quang & Doan, Quang-Van & Ngo-Duc, Thanh & Nguyen Dinh, Van & Dinh Duc, Nguyen, 2022. "Offshore wind resource in the context of global climate change over a tropical area," Applied Energy, Elsevier, vol. 308(C).
    5. Pryor, Sara C. & Barthelmie, Rebecca J., 2024. "Wind shadows impact planning of large offshore wind farms," Applied Energy, Elsevier, vol. 359(C).
    6. Liu, Min & Qin, Jianjun & Lu, Da-Gang & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2022. "Towards resilience of offshore wind farms: A framework and application to asset integrity management," Applied Energy, Elsevier, vol. 322(C).
    7. Ismail Kamdar & Shahid Ali & Juntakan Taweekun & Hafiz Muhammad Ali, 2021. "Wind Farm Site Selection Using WAsP Tool for Application in the Tropical Region," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
    8. de Faria, Victor A.D. & de Queiroz, Anderson R. & DeCarolis, Joseph F., 2022. "Optimizing offshore renewable portfolios under resource variability," Applied Energy, Elsevier, vol. 326(C).
    9. deCastro, M. & Rusu, L. & Arguilé-Pérez, B. & Ribeiro, A. & Costoya, X. & Carvalho, D. & Gómez-Gesteira, M., 2024. "Different approaches to analyze the impact of future climate change on the exploitation of wave energy," Renewable Energy, Elsevier, vol. 220(C).
    10. Jeong, Michael & Loth, Eric & Qin, Chris & Selig, Michael & Johnson, Nick, 2024. "Aerodynamic rotor design for a 25 MW offshore downwind turbine," Applied Energy, Elsevier, vol. 353(PA).
    11. Chenglai Wu & Zhaohui Lin & Yaping Shao & Xiaohong Liu & Ying Li, 2022. "Drivers of recent decline in dust activity over East Asia," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Dong Xia & Huiwen Nie & Lei Sun & Jing Wang & Kim-Chiu Chow & Kwing-Lam Chan & Donghai Wang, 2022. "Urbanization Effects on Surface Wind in the Guangdong–Hong Kong–Macao Greater Bay Area Using a Fan-Sector Method," IJERPH, MDPI, vol. 19(6), pages 1-15, March.
    13. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Li, Chen & Mogollón, José M. & Tukker, Arnold & Dong, Jianning & von Terzi, Dominic & Zhang, Chunbo & Steubing, Bernhard, 2022. "Future material requirements for global sustainable offshore wind energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    15. Liu, Fa & Wang, Xunming & Sun, Fubao & Wang, Hong, 2022. "Correct and remap solar radiation and photovoltaic power in China based on machine learning models," Applied Energy, Elsevier, vol. 312(C).
    16. Abramic, A. & García Mendoza, A. & Haroun, R., 2021. "Introducing offshore wind energy in the sea space: Canary Islands case study developed under Maritime Spatial Planning principles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. He, J.Y. & Li, Q.S. & Chan, P.W. & Zhao, X.D., 2023. "Assessment of future wind resources under climate change using a multi-model and multi-method ensemble approach," Applied Energy, Elsevier, vol. 329(C).
    18. Cristian Mattar & Felipe Cabello-Españon & Nicolas G. Alonso-de-Linaje, 2021. "Towards a Future Scenario for Offshore Wind Energy in Chile: Breaking the Paradigm," Sustainability, MDPI, vol. 13(13), pages 1-16, June.
    19. Christopher Jung & Dirk Schindler, 2023. "Reasons for the Recent Onshore Wind Capacity Factor Increase," Energies, MDPI, vol. 16(14), pages 1-17, July.
    20. Gkeka-Serpetsidaki, Pandora & Papadopoulos, Stylianos & Tsoutsos, Theocharis, 2022. "Assessment of the visual impact of offshore wind farms," Renewable Energy, Elsevier, vol. 190(C), pages 358-370.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2618-:d:1404534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.