IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v16y2024i12p436-d1526717.html
   My bibliography  Save this article

An Ensemble Deep CNN Approach for Power Quality Disturbance Classification: A Technological Route Towards Smart Cities Using Image-Based Transfer

Author

Listed:
  • Mirza Ateeq Ahmed Baig

    (Department of Electrical Engineering, Mirpur University of Science & Technology (MUST), Mirpur 10250, Pakistan)

  • Naeem Iqbal Ratyal

    (Department of Electrical Engineering, Mirpur University of Science & Technology (MUST), Mirpur 10250, Pakistan)

  • Adil Amin

    (Department of Electrical Engineering, Mirpur University of Science & Technology (MUST), Mirpur 10250, Pakistan)

  • Umar Jamil

    (Department of Electrical and Computer Engineering, University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA)

  • Sheroze Liaquat

    (Eaton Research Labs, Eaton Corporation, Golden, CO 80401, USA)

  • Haris M. Khalid

    (College of Engineering and Information Technology, University of Dubai, Dubai 14143, United Arab Emirates
    Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg 2006, South Africa)

  • Muhammad Fahad Zia

    (Department of Electrical and Computer Engineering, American University in Dubai, Dubai 28282, United Arab Emirates)

Abstract

The abundance of powered semiconductor devices has increased with the introduction of renewable energy sources into the grid, causing power quality disturbances (PQDs). This represents a huge challenge for grid reliability and smart city infrastructures. Accurate detection and classification are important for grid reliability and consumers’ appliances in a smart city environment. Conventionally, power quality monitoring relies on trivial machine learning classifiers or signal processing methods. However, recent advancements have introduced Deep Convolution Neural Networks (DCNNs) as promising methods for the detection and classification of PQDs. These techniques have the potential to demonstrate high classification accuracy, making them a more appropriate choice for real-time operations in a smart city framework. This paper presents a voting ensemble approach to classify sixteen PQDs, using the DCNN architecture through transfer learning. In this process, continuous wavelet transform (CWT) is employed to convert one-dimensional (1-D) PQD signals into time–frequency images. Four pre-trained DCNN architectures, i.e., Residual Network-50 (ResNet-50), Visual Geometry Group-16 (VGG-16), AlexNet and SqeezeNet are trained and implemented in MATLAB, using images of four datasets, i.e., without noise, 20 dB noise, 30 dB noise and random noise. Additionally, we also tested the performance of ResNet-50 with a squeeze-and-excitation (SE) mechanism. It was observed that ResNet-50 with the SE mechanism has a better classification accuracy; however, it causes computational overheads. The classification performance is enhanced by using the voting ensemble model. The results indicate that the proposed scheme improved the accuracy (99.98%), precision (99.97%), recall (99.80%) and F1-score (99.85%). As an outcome of this work, it is demonstrated that ResNet-50 with the SE mechanism is a viable choice as a single classification model, while an ensemble approach further increases the generalized performance for PQD classification.

Suggested Citation

  • Mirza Ateeq Ahmed Baig & Naeem Iqbal Ratyal & Adil Amin & Umar Jamil & Sheroze Liaquat & Haris M. Khalid & Muhammad Fahad Zia, 2024. "An Ensemble Deep CNN Approach for Power Quality Disturbance Classification: A Technological Route Towards Smart Cities Using Image-Based Transfer," Future Internet, MDPI, vol. 16(12), pages 1-24, November.
  • Handle: RePEc:gam:jftint:v:16:y:2024:i:12:p:436-:d:1526717
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/16/12/436/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/16/12/436/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Yulong & Jin, Tao & Mohamed, Mohamed A., 2023. "A novel dual-attention optimization model for points classification of power quality disturbances," Applied Energy, Elsevier, vol. 339(C).
    2. Wang, Shouxiang & Chen, Haiwen, 2019. "A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network," Applied Energy, Elsevier, vol. 235(C), pages 1126-1140.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enrique Reyes-Archundia & Wuqiang Yang & Jose A. Gutiérrez Gnecchi & Javier Rodríguez-Herrejón & Juan C. Olivares-Rojas & Aldo V. Rico-Medina, 2024. "Effect of Phase Shifting on Real-Time Detection and Classification of Power Quality Disturbances," Energies, MDPI, vol. 17(10), pages 1-14, May.
    2. Zahoor Ali Khan & Muhammad Adil & Nadeem Javaid & Malik Najmus Saqib & Muhammad Shafiq & Jin-Ghoo Choi, 2020. "Electricity Theft Detection Using Supervised Learning Techniques on Smart Meter Data," Sustainability, MDPI, vol. 12(19), pages 1-25, September.
    3. Ren, Tao & Modest, Michael F. & Fateev, Alexander & Sutton, Gavin & Zhao, Weijie & Rusu, Florin, 2019. "Machine learning applied to retrieval of temperature and concentration distributions from infrared emission measurements," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Xiao, Tianqi & You, Fengqi, 2023. "Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization," Applied Energy, Elsevier, vol. 342(C).
    5. Artvin-Darien Gonzalez-Abreu & Miguel Delgado-Prieto & Roque-Alfredo Osornio-Rios & Juan-Jose Saucedo-Dorantes & Rene-de-Jesus Romero-Troncoso, 2021. "A Novel Deep Learning-Based Diagnosis Method Applied to Power Quality Disturbances," Energies, MDPI, vol. 14(10), pages 1-17, May.
    6. Li, Jianbin & Chen, Zhiqiang & Cheng, Long & Liu, Xiufeng, 2022. "Energy data generation with Wasserstein Deep Convolutional Generative Adversarial Networks," Energy, Elsevier, vol. 257(C).
    7. Zakarya Oubrahim & Yassine Amirat & Mohamed Benbouzid & Mohammed Ouassaid, 2023. "Power Quality Disturbances Characterization Using Signal Processing and Pattern Recognition Techniques: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-41, March.
    8. Noor Hussain & Mashood Nasir & Juan Carlos Vasquez & Josep M. Guerrero, 2020. "Recent Developments and Challenges on AC Microgrids Fault Detection and Protection Systems–A Review," Energies, MDPI, vol. 13(9), pages 1-31, May.
    9. Sun, Chenhao & Wang, Xin & Zheng, Yihui, 2020. "An ensemble system to predict the spatiotemporal distribution of energy security weaknesses in transmission networks," Applied Energy, Elsevier, vol. 258(C).
    10. Raquel Martinez & Pablo Castro & Alberto Arroyo & Mario Manana & Noemi Galan & Fidel Simon Moreno & Sergio Bustamante & Alberto Laso, 2022. "Techniques to Locate the Origin of Power Quality Disturbances in a Power System: A Review," Sustainability, MDPI, vol. 14(12), pages 1-27, June.
    11. Lin Yang & Linming Guo & Wenhai Zhang & Xiaomei Yang, 2022. "Classification of Multiple Power Quality Disturbances by Tunable-Q Wavelet Transform with Parameter Selection," Energies, MDPI, vol. 15(9), pages 1-16, May.
    12. David Lumbreras & Eduardo Gálvez & Alfonso Collado & Jordi Zaragoza, 2020. "Trends in Power Quality, Harmonic Mitigation and Standards for Light and Heavy Industries: A Review," Energies, MDPI, vol. 13(21), pages 1-24, November.
    13. Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    14. Azam Bagheri & Roger Alves de Oliveira & Math H. J. Bollen & Irene Y. H. Gu, 2022. "A Framework Based on Machine Learning for Analytics of Voltage Quality Disturbances," Energies, MDPI, vol. 15(4), pages 1-14, February.
    15. Guo, Junyu & Yang, Yulai & Li, He & Wang, Jiang & Tang, Aimin & Shan, Daiwei & Huang, Bangkui, 2024. "A hybrid deep learning model towards fault diagnosis of drilling pump," Applied Energy, Elsevier, vol. 372(C).
    16. Artvin-Darien Gonzalez-Abreu & Roque-Alfredo Osornio-Rios & Arturo-Yosimar Jaen-Cuellar & Miguel Delgado-Prieto & Jose-Alfonso Antonino-Daviu & Athanasios Karlis, 2022. "Advances in Power Quality Analysis Techniques for Electrical Machines and Drives: A Review," Energies, MDPI, vol. 15(5), pages 1-26, March.
    17. Zhang, Liangheng & Jiang, Congmei & Pang, Aiping & He, Yu, 2024. "Super-efficient detector and defense method for adversarial attacks in power quality classification," Applied Energy, Elsevier, vol. 361(C).
    18. da Silva, Roberto Perillo Barbosa & Quadros, Rodolfo & Shaker, Hamid Reza & da Silva, Luiz Carlos Pereira, 2020. "Effects of mixed electronic loads on the electrical energy systems considering different loading conditions with focus on power quality and billing issues," Applied Energy, Elsevier, vol. 277(C).
    19. Jude Suchithra & Duane Robinson & Amin Rajabi, 2023. "Hosting Capacity Assessment Strategies and Reinforcement Learning Methods for Coordinated Voltage Control in Electricity Distribution Networks: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    20. Mohammad Reza Shadi & Hamid Mirshekali & Rahman Dashti & Mohammad-Taghi Ameli & Hamid Reza Shaker, 2021. "A Parameter-Free Approach for Fault Section Detection on Distribution Networks Employing Gated Recurrent Unit," Energies, MDPI, vol. 14(19), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:16:y:2024:i:12:p:436-:d:1526717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.