IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2264-d1390478.html
   My bibliography  Save this article

Assessment of the Efficiency of a Hybrid Photovoltaic and Photovoltaic Heating System (PV–Solar) in the Context of a Warehouse for a Housing Community in Poland

Author

Listed:
  • Andrzej Gawlik

    (Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology, 70-310 Szczecin, Poland)

  • Marcin Nowakowski

    (Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology, 70-310 Szczecin, Poland)

  • Marcin Rabe

    (Management Institute, University of Szczecin, 70-453 Szczecin, Poland)

  • Dariusz Rajchel

    (Faculty of Economics and Management, Opole University of Technology, 45-758 Opole, Poland)

  • Yuriy Bilan

    (Faculty of Management, Rzeszów University of Technology, 35-959 Rzeszów, Poland)

  • Agnieszka Łopatka

    (Institute of Economics and Finance, University of Szczecin, 70-453 Szczecin, Poland)

  • Jurgita Martinkiene

    (Lithuania Business College, 91249 Klaipėda, Lithuania)

  • Serhiy Kozmenko

    (Institute of Management, University of Social Sciences, 9 Sienkiewicza Str., 90-113 Lodz, Poland)

Abstract

In light of global challenges such as the war in Ukraine and the depletion of fossil fuel resources, it is essential to explore sustainable energy solutions. Hybrid energy systems represent a potential solution, offering energy independence to urban housing estates and reducing CO 2 emissions. This article aims to explore the feasibility of integrating photovoltaic systems (utilizing vacuum collectors) and combined utilities (system heat and electricity) in a hybrid setup, leveraging existing technical infrastructure with necessary modifications. A key aspect is to perform calculations on the amount of heat and electricity generated from these systems. The study analyzes the demand for heat and electricity among consumers compared to the estimated production from renewable sources. Calculations also include the potential energy savings and CO 2 emission reductions achievable through the proposed solutions. The findings indicate that hybrid photovoltaic systems with heat storage could effectively address energy issues in urban housing estates, given adequate support and community involvement. The innovative methodology employed in this study encompasses both analytical and experimental research approaches. The analysis employs advanced statistical techniques and data integration to enhance understanding of the phenomena studied, while the experimental research provides robust results through controlled variable manipulation and precise measurement tools, thereby verifying the study’s objectives.

Suggested Citation

  • Andrzej Gawlik & Marcin Nowakowski & Marcin Rabe & Dariusz Rajchel & Yuriy Bilan & Agnieszka Łopatka & Jurgita Martinkiene & Serhiy Kozmenko, 2024. "Assessment of the Efficiency of a Hybrid Photovoltaic and Photovoltaic Heating System (PV–Solar) in the Context of a Warehouse for a Housing Community in Poland," Energies, MDPI, vol. 17(10), pages 1-32, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2264-:d:1390478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2264/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2264/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rad, Farzin M. & Fung, Alan S., 2016. "Solar community heating and cooling system with borehole thermal energy storage – Review of systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1550-1561.
    2. Mojiri, Ahmad & Stanley, Cameron & Rodriguez-Sanchez, David & Everett, Vernie & Blakers, Andrew & Rosengarten, Gary, 2016. "A spectral-splitting PV–thermal volumetric solar receiver," Applied Energy, Elsevier, vol. 169(C), pages 63-71.
    3. Pang, Wei & Zhang, Qian & Cui, Yanan & Zhang, Linrui & Yu, Hongwen & Zhang, Xiaoyan & Zhang, Yongzhe & Yan, Hui, 2019. "Numerical simulation and experimental validation of a photovoltaic/thermal system based on a roll-bond aluminum collector," Energy, Elsevier, vol. 187(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Rosato & Antonio Ciervo & Giovanni Ciampi & Michelangelo Scorpio & Sergio Sibilio, 2020. "Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage," Energies, MDPI, vol. 13(20), pages 1-40, October.
    2. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    3. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    4. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    5. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    6. Ciampi, Giovanni & Rosato, Antonio & Sibilio, Sergio, 2018. "Thermo-economic sensitivity analysis by dynamic simulations of a small Italian solar district heating system with a seasonal borehole thermal energy storage," Energy, Elsevier, vol. 143(C), pages 757-771.
    7. Moss, R.W. & Henshall, P. & Arya, F. & Shire, G.S.F. & Hyde, T. & Eames, P.C., 2018. "Performance and operational effectiveness of evacuated flat plate solar collectors compared with conventional thermal, PVT and PV panels," Applied Energy, Elsevier, vol. 216(C), pages 588-601.
    8. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
    9. Kai Stricker & Jens C. Grimmer & Robert Egert & Judith Bremer & Maziar Gholami Korzani & Eva Schill & Thomas Kohl, 2020. "The Potential of Depleted Oil Reservoirs for High-Temperature Storage Systems," Energies, MDPI, vol. 13(24), pages 1-26, December.
    10. Abas, Naeem & Kalair, Ali Raza & Khan, Nasrullah & Haider, Aun & Saleem, Zahid & Saleem, Muhammad Shoaib, 2018. "Natural and synthetic refrigerants, global warming: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 557-569.
    11. Alois Resch & Robert Höller, 2021. "Electrical Efficiency Increase in CPVT Collectors by Spectral Splitting," Energies, MDPI, vol. 14(23), pages 1-18, December.
    12. Francesca Ceglia & Elisa Marrasso & Carlo Roselli & Maurizio Sasso, 2021. "Small Renewable Energy Community: The Role of Energy and Environmental Indicators for Power Grid," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    13. Salameh, Tareq & Tawalbeh, Muhammad & Juaidi, Adel & Abdallah, Ramez & Hamid, Abdul-Kadir, 2021. "A novel three-dimensional numerical model for PV/T water system in hot climate region," Renewable Energy, Elsevier, vol. 164(C), pages 1320-1333.
    14. Rehman, Hassam ur & Hirvonen, Janne & Sirén, Kai, 2018. "Performance comparison between optimized design of a centralized and semi-decentralized community size solar district heating system," Applied Energy, Elsevier, vol. 229(C), pages 1072-1094.
    15. Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    16. Dong, Shiqian & Long, He & Guan, Jingxuan & Jiang, Lina & Zhuang, Chaoqun & Gao, Yafeng & Di, Yanqiang, 2024. "Performance investigation of a hybrid PV/T collector with a novel trapezoidal fluid channel," Energy, Elsevier, vol. 288(C).
    17. Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K., 2016. "The optical efficiency of three different geometries of a small scale cavity receiver for concentrated solar applications," Applied Energy, Elsevier, vol. 179(C), pages 1081-1096.
    18. Han, Youhua & Liu, Yang & Lu, Shixiang & Basalike, Pie & Zhang, Jili, 2021. "Electrical performance and power prediction of a roll-bond photovoltaic thermal array under dewing and frosting conditions," Energy, Elsevier, vol. 237(C).
    19. Renaldi, Renaldi & Friedrich, Daniel, 2019. "Techno-economic analysis of a solar district heating system with seasonal thermal storage in the UK," Applied Energy, Elsevier, vol. 236(C), pages 388-400.
    20. Joshi, Sandeep S. & Dhoble, Ashwinkumar S., 2018. "Analytical approach for performance estimation of BSPVT system with liquid spectrum filters," Energy, Elsevier, vol. 157(C), pages 778-791.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2264-:d:1390478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.