IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2264-d1390478.html
   My bibliography  Save this article

Assessment of the Efficiency of a Hybrid Photovoltaic and Photovoltaic Heating System (PV–Solar) in the Context of a Warehouse for a Housing Community in Poland

Author

Listed:
  • Andrzej Gawlik

    (Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology, 70-310 Szczecin, Poland)

  • Marcin Nowakowski

    (Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology, 70-310 Szczecin, Poland)

  • Marcin Rabe

    (Management Institute, University of Szczecin, 70-453 Szczecin, Poland)

  • Dariusz Rajchel

    (Faculty of Economics and Management, Opole University of Technology, 45-758 Opole, Poland)

  • Yuriy Bilan

    (Faculty of Management, Rzeszów University of Technology, 35-959 Rzeszów, Poland)

  • Agnieszka Łopatka

    (Institute of Economics and Finance, University of Szczecin, 70-453 Szczecin, Poland)

  • Jurgita Martinkiene

    (Lithuania Business College, 91249 Klaipėda, Lithuania)

  • Serhiy Kozmenko

    (Institute of Management, University of Social Sciences, 9 Sienkiewicza Str., 90-113 Lodz, Poland)

Abstract

In light of global challenges such as the war in Ukraine and the depletion of fossil fuel resources, it is essential to explore sustainable energy solutions. Hybrid energy systems represent a potential solution, offering energy independence to urban housing estates and reducing CO 2 emissions. This article aims to explore the feasibility of integrating photovoltaic systems (utilizing vacuum collectors) and combined utilities (system heat and electricity) in a hybrid setup, leveraging existing technical infrastructure with necessary modifications. A key aspect is to perform calculations on the amount of heat and electricity generated from these systems. The study analyzes the demand for heat and electricity among consumers compared to the estimated production from renewable sources. Calculations also include the potential energy savings and CO 2 emission reductions achievable through the proposed solutions. The findings indicate that hybrid photovoltaic systems with heat storage could effectively address energy issues in urban housing estates, given adequate support and community involvement. The innovative methodology employed in this study encompasses both analytical and experimental research approaches. The analysis employs advanced statistical techniques and data integration to enhance understanding of the phenomena studied, while the experimental research provides robust results through controlled variable manipulation and precise measurement tools, thereby verifying the study’s objectives.

Suggested Citation

  • Andrzej Gawlik & Marcin Nowakowski & Marcin Rabe & Dariusz Rajchel & Yuriy Bilan & Agnieszka Łopatka & Jurgita Martinkiene & Serhiy Kozmenko, 2024. "Assessment of the Efficiency of a Hybrid Photovoltaic and Photovoltaic Heating System (PV–Solar) in the Context of a Warehouse for a Housing Community in Poland," Energies, MDPI, vol. 17(10), pages 1-32, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2264-:d:1390478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2264/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2264/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rad, Farzin M. & Fung, Alan S., 2016. "Solar community heating and cooling system with borehole thermal energy storage – Review of systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1550-1561.
    2. Mojiri, Ahmad & Stanley, Cameron & Rodriguez-Sanchez, David & Everett, Vernie & Blakers, Andrew & Rosengarten, Gary, 2016. "A spectral-splitting PV–thermal volumetric solar receiver," Applied Energy, Elsevier, vol. 169(C), pages 63-71.
    3. Pang, Wei & Zhang, Qian & Cui, Yanan & Zhang, Linrui & Yu, Hongwen & Zhang, Xiaoyan & Zhang, Yongzhe & Yan, Hui, 2019. "Numerical simulation and experimental validation of a photovoltaic/thermal system based on a roll-bond aluminum collector," Energy, Elsevier, vol. 187(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Zhou & Zhikai Cui & Feng Xu & Guoqiang Zhang, 2021. "Performance Analysis of Solar-Assisted Ground-Coupled Heat Pump Systems with Seasonal Thermal Energy Storage to Supply Domestic Hot Water for Campus Buildings in Southern China," Sustainability, MDPI, vol. 13(15), pages 1-23, July.
    2. Antonio Rosato & Antonio Ciervo & Giovanni Ciampi & Michelangelo Scorpio & Sergio Sibilio, 2020. "Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage," Energies, MDPI, vol. 13(20), pages 1-40, October.
    3. Saloux, E. & Candanedo, J.A., 2019. "Modelling stratified thermal energy storage tanks using an advanced flowrate distribution of the received flow," Applied Energy, Elsevier, vol. 241(C), pages 34-45.
    4. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    5. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    6. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    7. Rehman, Hassam ur & Hirvonen, Janne & Sirén, Kai, 2017. "A long-term performance analysis of three different configurations for community-sized solar heating systems in high latitudes," Renewable Energy, Elsevier, vol. 113(C), pages 479-493.
    8. Xie, Kun & Nian, Yong-Le & Cheng, Wen-Long, 2018. "Analysis and optimization of underground thermal energy storage using depleted oil wells," Energy, Elsevier, vol. 163(C), pages 1006-1016.
    9. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    10. Ciampi, Giovanni & Rosato, Antonio & Sibilio, Sergio, 2018. "Thermo-economic sensitivity analysis by dynamic simulations of a small Italian solar district heating system with a seasonal borehole thermal energy storage," Energy, Elsevier, vol. 143(C), pages 757-771.
    11. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2018. "Seasonal thermal energy storage system for cold climate zones: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 38-49.
    12. Zareie, Zahra & Ahmadi, Rouhollah & Asadi, Mahdi, 2024. "A comprehensive numerical investigation of a branch-inspired channel in roll-bond type PVT system using design of experiments approach," Energy, Elsevier, vol. 286(C).
    13. Moss, R.W. & Henshall, P. & Arya, F. & Shire, G.S.F. & Hyde, T. & Eames, P.C., 2018. "Performance and operational effectiveness of evacuated flat plate solar collectors compared with conventional thermal, PVT and PV panels," Applied Energy, Elsevier, vol. 216(C), pages 588-601.
    14. Emil Nilsson & Patrik Rohdin, 2019. "Empirical Validation and Numerical Predictions of an Industrial Borehole Thermal Energy Storage System," Energies, MDPI, vol. 12(12), pages 1-20, June.
    15. Brekke, Nick & Dale, John & DeJarnette, Drew & Hari, Parameswar & Orosz, Matthew & Roberts, Kenneth & Tunkara, Ebrima & Otanicar, Todd, 2018. "Detailed performance model of a hybrid photovoltaic/thermal system utilizing selective spectral nanofluid absorption," Renewable Energy, Elsevier, vol. 123(C), pages 683-693.
    16. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
    17. V. Tirupati Rao & Y. Raja Sekhar, 2023. "Hybrid Photovoltaic/Thermal (PVT) Collector Systems With Different Absorber Configurations For Thermal Management – A Review," Energy & Environment, , vol. 34(3), pages 690-735, May.
    18. Rotta Loria, Alessandro F., 2021. "The thermal energy storage potential of underground tunnels used as heat exchangers," Renewable Energy, Elsevier, vol. 176(C), pages 214-227.
    19. Kai Stricker & Jens C. Grimmer & Robert Egert & Judith Bremer & Maziar Gholami Korzani & Eva Schill & Thomas Kohl, 2020. "The Potential of Depleted Oil Reservoirs for High-Temperature Storage Systems," Energies, MDPI, vol. 13(24), pages 1-26, December.
    20. Chen, Zhi-Hui & Qiao, Na & Wang, Yang & Liang, Li & Yang, Yibiao & Ye, Han & Liu, Shaoding, 2016. "Efficient broadband energy absorption based on inverted-pyramid photonic crystal surface and two-dimensional randomly patterned metallic reflector," Applied Energy, Elsevier, vol. 172(C), pages 59-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2264-:d:1390478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.