IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3903-d1139795.html
   My bibliography  Save this article

Potentialities and Impacts of Biomass Energy in the Brazilian Northeast Region

Author

Listed:
  • Edvaldo Pereira Santos Júnior

    (Graduate Program in Energy and Nuclear Technologies (PROTEN), Federal University of Pernambuco (UFPE), Recife 50740-545, Pernambuco, Brazil)

  • Elias Gabriel Magalhães Silva

    (Graduate Program in Energy and Nuclear Technologies (PROTEN), Federal University of Pernambuco (UFPE), Recife 50740-545, Pernambuco, Brazil)

  • Maria Helena de Sousa

    (Graduate Program in Energy and Nuclear Technologies (PROTEN), Federal University of Pernambuco (UFPE), Recife 50740-545, Pernambuco, Brazil)

  • Emmanuel Damilano Dutra

    (Department of Nuclear Energy (DEN), Federal University of Pernambuco (UFPE), Recife 50740-545, Pernambuco, Brazil)

  • Antonio Samuel Alves da Silva

    (Department of Statistics and Informatics, Federal Rural University of Pernambuco (UFRPE), Recife 52171-900, Pernambuco, Brazil)

  • Aldo Torres Sales

    (Department of Nuclear Energy (DEN), Federal University of Pernambuco (UFPE), Recife 50740-545, Pernambuco, Brazil)

  • Everardo Valadares de Sa Barretto Sampaio

    (Department of Nuclear Energy (DEN), Federal University of Pernambuco (UFPE), Recife 50740-545, Pernambuco, Brazil)

  • Luiz Moreira Coelho Junior

    (Department of Renewable Energy Engineering, Center for Alternative and Renewable Energy, Federal University of Paraiba (UFPB), João Pessoa 58051-900, Paraiba, Brazil)

  • Rômulo Simões Cezar Menezes

    (Department of Nuclear Energy (DEN), Federal University of Pernambuco (UFPE), Recife 50740-545, Pernambuco, Brazil)

Abstract

In Northeast Brazil, the use of biomass for energy generation is settled on traditional productive arrangements, such as a sugarcane production system in the humid Atlantic coastal area and firewood extraction from native tropical dry forests in the west. In parallel, substantial amounts of other biomass sources, such as residues from agricultural or urban processes, are still little used or wholly wasted, fudging the opportunity to generate new value chains based on these biomass sources. We hypothesize that using these non-traditional biomass sources to produce biofuels would significantly increase the regional bioenergy supply. In this context, this article discusses the potential for the production and use of biofuels and bioenergy in Northeast Brazil and its effects on regional development, which may be useful for both private actors and policymakers in the energy sector. The use of biomass sources for energy in the region is significant, reaching approximately 8.8 million tons of oil equivalent (toe) per year, emphasizing the already consolidated production of sugarcane and its derivatives. The use of all biomass resources in the Northeast region could supply around 4% of the Brazilian national electrical energy demand, with an environmental footprint of 0.055 tCO 2eq per toe, which would contribute to reducing emissions from the Brazilian energy matrix generation. Regarding the spatial distribution of biomass sources, sugarcane prevails on the coast, firewood and livestock manure in the dryland area towards the west, and municipal solid waste is distributed throughout the region within urban areas. Different from what we expected, the potential energy recovery from municipal waste and animal manure would increase by only 17% the current bioenergy supply. In the future, since the majority of the region presents a semi-arid climate with limited rainfall, to increase the use of biomass as an energy source, there is a need to increase the supply of biomass sources with high efficiency in water use and good yields in drylands. For this, the cultivation and use of cacti and agave, for example, could contribute to making biorefineries viable in the region. Above all, public policies for harnessing bioenergy in NE Brazil must seek opportunities associated with the carbon/decarbonization economy, with studies being needed to assess the technical, economic, social, and environmental viability of future productive arrangements.

Suggested Citation

  • Edvaldo Pereira Santos Júnior & Elias Gabriel Magalhães Silva & Maria Helena de Sousa & Emmanuel Damilano Dutra & Antonio Samuel Alves da Silva & Aldo Torres Sales & Everardo Valadares de Sa Barretto , 2023. "Potentialities and Impacts of Biomass Energy in the Brazilian Northeast Region," Energies, MDPI, vol. 16(9), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3903-:d:1139795
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3903/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3903/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benevenuto, Rodolfo & Caulfield, Brian, 2020. "Measuring access to urban centres in rural Northeast Brazil: A spatial accessibility poverty index," Journal of Transport Geography, Elsevier, vol. 82(C).
    2. Ferreira, L.R.A. & Otto, R.B. & Silva, F.P. & De Souza, S.N.M. & De Souza, S.S. & Ando Junior, O.H., 2018. "Review of the energy potential of the residual biomass for the distributed generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 440-455.
    3. Santos Júnior, Edvaldo Pereira & Silva, Magno Vamberto Batista da & Simioni, Flávio José & Rotella Junior, Paulo & Menezes, Rômulo Simões Cezar & Coelho Junior, Luiz Moreira, 2022. "Location and concentration of the forest bioelectricity supply in Brazil: A space-time analysis," Renewable Energy, Elsevier, vol. 199(C), pages 710-719.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, D.A.L. & Filleti, R.A.P. & Musule, R. & Matheus, T.T. & Freire, F., 2022. "A systematic review and life cycle assessment of biomass pellets and briquettes production in Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Chepeliev, Maksym & Diachuk, Oleksandr & Podolets, Roman & Trypolska, Galyna, 2021. "The role of bioenergy in Ukraine's climate mitigation policy by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Durval Maluf Filho & Suani Teixeira Coelho & Danilo Perecin, 2022. "Opportunities and Challenges of Gasification of Municipal Solid Waste (MSW) in Brazil," Energies, MDPI, vol. 15(8), pages 1-13, April.
    4. Daniel S. A. Carvalho & Gervásio F. Santos, 2022. "Transport and density of population groups in the urban area of the city of Salvador," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(6), pages 234-253, December.
    5. Simioni, Taysnara & Agustini, Caroline Borges & Dettmer, Aline & Gutterres, Mariliz, 2022. "Enhancement of biogas production by anaerobic co-digestion of leather waste with raw and pretreated wheat straw," Energy, Elsevier, vol. 253(C).
    6. Hollas, C.E. & Bolsan, A.C. & Chini, A. & Venturin, B. & Bonassa, G. & Cândido, D. & Antes, F.G. & Steinmetz, R.L.R. & Prado, N.V. & Kunz, A., 2021. "Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Xiaoyu Chen & Qingming Zhan & Yuli Fan, 2023. "Classification and Evaluation Methods for Optimization of Land Use Efficiency at Village Level," Land, MDPI, vol. 12(3), pages 1-16, March.
    8. Min Zhou & Liu Yang & Dan Ye, 2023. "Spatiotemporal Variation of Rural Vulnerability and Its Clustering Model in Guizhou Province," Land, MDPI, vol. 12(7), pages 1-25, July.
    9. Wajahat Ullah Khan Tareen & Muhammad Tariq Dilbar & Muhammad Farhan & Muhammad Ali Nawaz & Ali Waqar Durrani & Kamran Ali Memon & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Muhammad Amir & Mu, 2019. "Present Status and Potential of Biomass Energy in Pakistan Based on Existing and Future Renewable Resources," Sustainability, MDPI, vol. 12(1), pages 1-40, December.
    10. Caiado Couto, Lilia & Campos, Luiza C. & da Fonseca-Zang, Warde & Zang, Joachim & Bleischwitz, Raimund, 2021. "Water, waste, energy and food nexus in Brazil: Identifying a resource interlinkage research agenda through a systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Vandenberghe, L.P.S. & Valladares-Diestra, K.K. & Bittencourt, G.A. & Zevallos Torres, L.A. & Vieira, S. & Karp, S.G. & Sydney, E.B. & de Carvalho, J.C. & Thomaz Soccol, V. & Soccol, C.R., 2022. "Beyond sugar and ethanol: The future of sugarcane biorefineries in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Jinhui Ma & Haijing Huang & Daibin Liu, 2023. "Influences of Spatial Accessibility and Service Capacity on the Utilization of Elderly-Care Facilities: A Case Study of the Main Urban Area of Chongqing," IJERPH, MDPI, vol. 20(6), pages 1-19, March.
    13. Rey, J.R.C. & Pio, D.T. & Tarelho, L.A.C., 2021. "Biomass direct gasification for electricity generation and natural gas replacement in the lime kilns of the pulp and paper industry: A techno-economic analysis," Energy, Elsevier, vol. 237(C).
    14. Santos Júnior, Edvaldo Pereira & Silva, Magno Vamberto Batista da & Simioni, Flávio José & Rotella Junior, Paulo & Menezes, Rômulo Simões Cezar & Coelho Junior, Luiz Moreira, 2022. "Location and concentration of the forest bioelectricity supply in Brazil: A space-time analysis," Renewable Energy, Elsevier, vol. 199(C), pages 710-719.
    15. Lowans, Christopher & Furszyfer Del Rio, Dylan & Sovacool, Benjamin K. & Rooney, David & Foley, Aoife M., 2021. "What is the state of the art in energy and transport poverty metrics? A critical and comprehensive review," Energy Economics, Elsevier, vol. 101(C).
    16. Zhang, Xinyue & Guo, Xiaopeng & Zhang, Xingping, 2024. "Mutual conversion mechanisms for environmental interest products to jointly enhance synergistic effect between power, CET and TGC markets in China," Energy Economics, Elsevier, vol. 131(C).
    17. Carroll, Páraic & Benevenuto, Rodolfo & Caulfield, Brian, 2021. "Identifying hotspots of transport disadvantage and car dependency in rural Ireland," Transport Policy, Elsevier, vol. 101(C), pages 46-56.
    18. Ali, Ramadan Hefny & Abdel Samee, Ahmed A. & Maghrabie, Hussein M., 2023. "Thermodynamic analysis of a cogeneration system in pulp and paper industry under singular and hybrid operating modes," Energy, Elsevier, vol. 263(PE).
    19. Antar, Mohammed & Lyu, Dongmei & Nazari, Mahtab & Shah, Ateeq & Zhou, Xiaomin & Smith, Donald L., 2021. "Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    20. Alonso-Epelde, E. & García-Muros, X. & González-Eguino, M., 2023. "Transport poverty indicators: A new framework based on the household budget survey," Energy Policy, Elsevier, vol. 181(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3903-:d:1139795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.