Nonintrusive Load Monitoring Using Recurrent Neural Networks with Occupants Location Information in Residential Buildings
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Eom, Yong Hwan & Yoo, Jin Woo & Hong, Sung Bin & Kim, Min Soo, 2019. "Refrigerant charge fault detection method of air source heat pump system using convolutional neural network for energy saving," Energy, Elsevier, vol. 187(C).
- Valueva, M.V. & Nagornov, N.N. & Lyakhov, P.A. & Valuev, G.V. & Chervyakov, N.I., 2020. "Application of the residue number system to reduce hardware costs of the convolutional neural network implementation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 232-243.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhong, Fangliang & Calautit, John Kaiser & Wu, Yupeng, 2022. "Assessment of HVAC system operational fault impacts and multiple faults interactions under climate change," Energy, Elsevier, vol. 258(C).
- Namrye Son, 2021. "Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
- Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Bode, Gerrit & Thul, Simon & Baranski, Marc & Müller, Dirk, 2020. "Real-world application of machine-learning-based fault detection trained with experimental data," Energy, Elsevier, vol. 198(C).
- Bahare Andayeshgar & Fardin Abdali-Mohammadi & Majid Sepahvand & Alireza Daneshkhah & Afshin Almasi & Nader Salari, 2022. "Developing Graph Convolutional Networks and Mutual Information for Arrhythmic Diagnosis Based on Multichannel ECG Signals," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
- Wang, Zhi & Peng, Xianyong & Zhou, Huaichun & Cao, Shengxian & Huang, Wenbo & Yan, Weijie & Li, Kuangyu & Fan, Siyuan, 2024. "A dynamic modeling method using channel-selection convolutional neural network: A case study of NOx emission," Energy, Elsevier, vol. 290(C).
- Chen, Jianli & Zhang, Liang & Li, Yanfei & Shi, Yifu & Gao, Xinghua & Hu, Yuqing, 2022. "A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Katarzyna Staszak & Bartosz Tylkowski & Maciej Staszak, 2023. "From Data to Diagnosis: How Machine Learning Is Changing Heart Health Monitoring," IJERPH, MDPI, vol. 20(5), pages 1-20, March.
- Guo, Yabin & Li, Yuduo & Li, Weilin, 2023. "On-site fault experiment and diagnosis research of the carbon dioxide transcritical heat pump system for energy saving," Energy, Elsevier, vol. 274(C).
- Fang, Xi & Gong, Guangcai & Li, Guannan & Chun, Liang & Li, Wenqiang & Peng, Pei, 2021. "A hybrid deep transfer learning strategy for short term cross-building energy prediction," Energy, Elsevier, vol. 215(PB).
- Zhong, Fangliang & Calautit, John Kaiser & Wu, Yupeng, 2023. "Fault data seasonal imbalance and insufficiency impacts on data-driven heating, ventilation and air-conditioning fault detection and diagnosis performances for energy-efficient building operations," Energy, Elsevier, vol. 282(C).
- Simos, Theodore E. & Katsikis, Vasilios N. & Mourtas, Spyridon D., 2022. "Multi-input bio-inspired weights and structure determination neuronet with applications in European Central Bank publications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 451-465.
- Mario Pérez-Gomariz & Antonio López-Gómez & Fernando Cerdán-Cartagena, 2023. "Artificial Neural Networks as Artificial Intelligence Technique for Energy Saving in Refrigeration Systems—A Review," Clean Technol., MDPI, vol. 5(1), pages 1-21, January.
- Simon P. Melgaard & Kamilla H. Andersen & Anna Marszal-Pomianowska & Rasmus L. Jensen & Per K. Heiselberg, 2022. "Fault Detection and Diagnosis Encyclopedia for Building Systems: A Systematic Review," Energies, MDPI, vol. 15(12), pages 1-50, June.
- Jaiyeop Lee & Ilho Kim, 2022. "Long-term stagnation monitoring using machine learning: comparison of artificial neural network model and convolution neural network model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2117-2130, May.
- Xiaochen Ju & Xinxin Zhao & Shengsheng Qian, 2022. "TransMF: Transformer-Based Multi-Scale Fusion Model for Crack Detection," Mathematics, MDPI, vol. 10(13), pages 1-18, July.
- Xiaoxia Liang & Fang Duan & Ian Bennett & David Mba, 2020. "A Comprehensive Health Indicator Integrated by the Dynamic Risk Profile from Condition Monitoring Data and the Function of Financial Losses," Energies, MDPI, vol. 14(1), pages 1-25, December.
- Eom, Yong Hwan & Chung, Yoong & Park, Minsu & Hong, Sung Bin & Kim, Min Soo, 2021. "Deep learning-based prediction method on performance change of air source heat pump system under frosting conditions," Energy, Elsevier, vol. 228(C).
- Weigert, Andreas & Hopf, Konstantin & Günther, Sebastian A. & Staake, Thorsten, 2022. "Heat pump inspections result in large energy savings when a pre-selection of households is performed: A promising use case of smart meter data," Energy Policy, Elsevier, vol. 169(C).
- Samuel Boahen & Kwesi Mensah & Selorm Kwaku Anka & Kwang Ho Lee & Jong Min Choi, 2021. "Fault Detection Algorithm for Multiple-Simultaneous Refrigerant Charge and Secondary Fluid Flow Rate Faults in Heat Pumps," Energies, MDPI, vol. 14(13), pages 1-19, June.
More about this item
Keywords
nonintrusive load monitoring (NILM); recurrent neural network (RNN); gated recurrent unit (GRU); occupant location information;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3688-:d:1132581. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.