Application of the residue number system to reduce hardware costs of the convolutional neural network implementation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2020.04.031
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xiaochen Ju & Xinxin Zhao & Shengsheng Qian, 2022. "TransMF: Transformer-Based Multi-Scale Fusion Model for Crack Detection," Mathematics, MDPI, vol. 10(13), pages 1-18, July.
- Bahare Andayeshgar & Fardin Abdali-Mohammadi & Majid Sepahvand & Alireza Daneshkhah & Afshin Almasi & Nader Salari, 2022. "Developing Graph Convolutional Networks and Mutual Information for Arrhythmic Diagnosis Based on Multichannel ECG Signals," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
- Jaiyeop Lee & Ilho Kim, 2022. "Long-term stagnation monitoring using machine learning: comparison of artificial neural network model and convolution neural network model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2117-2130, May.
- Simos, Theodore E. & Katsikis, Vasilios N. & Mourtas, Spyridon D., 2022. "Multi-input bio-inspired weights and structure determination neuronet with applications in European Central Bank publications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 451-465.
- Namrye Son, 2021. "Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
- Katarzyna Staszak & Bartosz Tylkowski & Maciej Staszak, 2023. "From Data to Diagnosis: How Machine Learning Is Changing Heart Health Monitoring," IJERPH, MDPI, vol. 20(5), pages 1-20, March.
- Myeung-Hun Lee & Hyeun-Jun Moon, 2023. "Nonintrusive Load Monitoring Using Recurrent Neural Networks with Occupants Location Information in Residential Buildings," Energies, MDPI, vol. 16(9), pages 1-22, April.
More about this item
Keywords
Image processing; Convolutional neural networks; Residue number system; Quantization noise; Field-programmable gate array (FPGA).;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:177:y:2020:i:c:p:232-243. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.