IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i5p4605-d1088287.html
   My bibliography  Save this article

From Data to Diagnosis: How Machine Learning Is Changing Heart Health Monitoring

Author

Listed:
  • Katarzyna Staszak

    (Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland)

  • Bartosz Tylkowski

    (Eurecat, Centre Tecnològic de Catalunya, C/Marcellí Domingo s/n, 43007 Tarragona, Spain)

  • Maciej Staszak

    (Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland)

Abstract

The rapid advances in science and technology in the field of artificial neural networks have led to noticeable interest in the application of this technology in medicine. Given the need to develop medical sensors that monitor vital signs to meet both people’s needs in real life and in clinical research, the use of computer-based techniques should be considered. This paper describes the latest progress in heart rate sensors empowered by machine learning methods. The paper is based on a review of the literature and patents from recent years, and is reported according to the PRISMA 2020 statement. The most important challenges and prospects in this field are presented. Key applications of machine learning are discussed in medical sensors used for medical diagnostics in the area of data collection, processing, and interpretation of results. Although current solutions are not yet able to operate independently, especially in the diagnostic context, it is likely that medical sensors will be further developed using advanced artificial intelligence methods.

Suggested Citation

  • Katarzyna Staszak & Bartosz Tylkowski & Maciej Staszak, 2023. "From Data to Diagnosis: How Machine Learning Is Changing Heart Health Monitoring," IJERPH, MDPI, vol. 20(5), pages 1-20, March.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:5:p:4605-:d:1088287
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/5/4605/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/5/4605/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Valueva, M.V. & Nagornov, N.N. & Lyakhov, P.A. & Valuev, G.V. & Chervyakov, N.I., 2020. "Application of the residue number system to reduce hardware costs of the convolutional neural network implementation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 232-243.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Namrye Son, 2021. "Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    2. Bahare Andayeshgar & Fardin Abdali-Mohammadi & Majid Sepahvand & Alireza Daneshkhah & Afshin Almasi & Nader Salari, 2022. "Developing Graph Convolutional Networks and Mutual Information for Arrhythmic Diagnosis Based on Multichannel ECG Signals," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
    3. Simos, Theodore E. & Katsikis, Vasilios N. & Mourtas, Spyridon D., 2022. "Multi-input bio-inspired weights and structure determination neuronet with applications in European Central Bank publications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 451-465.
    4. Jaiyeop Lee & Ilho Kim, 2022. "Long-term stagnation monitoring using machine learning: comparison of artificial neural network model and convolution neural network model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2117-2130, May.
    5. Xiaochen Ju & Xinxin Zhao & Shengsheng Qian, 2022. "TransMF: Transformer-Based Multi-Scale Fusion Model for Crack Detection," Mathematics, MDPI, vol. 10(13), pages 1-18, July.
    6. Myeung-Hun Lee & Hyeun-Jun Moon, 2023. "Nonintrusive Load Monitoring Using Recurrent Neural Networks with Occupants Location Information in Residential Buildings," Energies, MDPI, vol. 16(9), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:5:p:4605-:d:1088287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.