IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i17p10707-d899728.html
   My bibliography  Save this article

Developing Graph Convolutional Networks and Mutual Information for Arrhythmic Diagnosis Based on Multichannel ECG Signals

Author

Listed:
  • Bahare Andayeshgar

    (Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran)

  • Fardin Abdali-Mohammadi

    (Department of Computer Engineering and Information Technology, Razi University, Kermanshah 6714967346, Iran)

  • Majid Sepahvand

    (Department of Computer Engineering and Information Technology, Razi University, Kermanshah 6714967346, Iran)

  • Alireza Daneshkhah

    (Research Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry CV1 2JH, UK)

  • Afshin Almasi

    (Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran)

  • Nader Salari

    (Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
    Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran)

Abstract

Cardiovascular diseases, like arrhythmia, as the leading causes of death in the world, can be automatically diagnosed using an electrocardiogram (ECG). The ECG-based diagnostic has notably resulted in reducing human errors. The main aim of this study is to increase the accuracy of arrhythmia diagnosis and classify various types of arrhythmias in individuals (suffering from cardiovascular diseases) using a novel graph convolutional network (GCN) benefitting from mutual information (MI) indices extracted from the ECG leads. In this research, for the first time, the relationships of 12 ECG leads measured using MI as an adjacency matrix were illustrated by the developed GCN and included in the ECG-based diagnostic method. Cross-validation methods were applied to select both training and testing groups. The proposed methodology was validated in practice by applying it to the large ECG database, recently published by Chapman University. The GCN-MI structure with 15 layers was selected as the best model for the selected database, which illustrates a very high accuracy in classifying different types of rhythms. The classification indicators of sensitivity, precision, specificity, and accuracy for classifying heart rhythm type, using GCN-MI, were computed as 98.45%, 97.89%, 99.85%, and 99.71%, respectively. The results of the present study and its comparison with other studies showed that considering the MI index to measure the relationship between cardiac leads has led to the improvement of GCN performance for detecting and classifying the type of arrhythmias, in comparison to the existing methods. For example, the above classification indicators for the GCN with the identity adjacency matrix (or GCN-Id) were reported to be 68.24%, 72.83%, 95.24%, and 92.68%, respectively.

Suggested Citation

  • Bahare Andayeshgar & Fardin Abdali-Mohammadi & Majid Sepahvand & Alireza Daneshkhah & Afshin Almasi & Nader Salari, 2022. "Developing Graph Convolutional Networks and Mutual Information for Arrhythmic Diagnosis Based on Multichannel ECG Signals," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:10707-:d:899728
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/17/10707/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/17/10707/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Valueva, M.V. & Nagornov, N.N. & Lyakhov, P.A. & Valuev, G.V. & Chervyakov, N.I., 2020. "Application of the residue number system to reduce hardware costs of the convolutional neural network implementation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 232-243.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Namrye Son, 2021. "Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    2. Katarzyna Staszak & Bartosz Tylkowski & Maciej Staszak, 2023. "From Data to Diagnosis: How Machine Learning Is Changing Heart Health Monitoring," IJERPH, MDPI, vol. 20(5), pages 1-20, March.
    3. Simos, Theodore E. & Katsikis, Vasilios N. & Mourtas, Spyridon D., 2022. "Multi-input bio-inspired weights and structure determination neuronet with applications in European Central Bank publications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 451-465.
    4. Jaiyeop Lee & Ilho Kim, 2022. "Long-term stagnation monitoring using machine learning: comparison of artificial neural network model and convolution neural network model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2117-2130, May.
    5. Xiaochen Ju & Xinxin Zhao & Shengsheng Qian, 2022. "TransMF: Transformer-Based Multi-Scale Fusion Model for Crack Detection," Mathematics, MDPI, vol. 10(13), pages 1-18, July.
    6. Myeung-Hun Lee & Hyeun-Jun Moon, 2023. "Nonintrusive Load Monitoring Using Recurrent Neural Networks with Occupants Location Information in Residential Buildings," Energies, MDPI, vol. 16(9), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:10707-:d:899728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.