IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3656-d1131560.html
   My bibliography  Save this article

Large Eddy Simulation of Flow and Heat Transfer in a Ribbed Channel for the Internal Cooling Passage of a Gas Turbine Blade: A Review

Author

Listed:
  • Joon Ahn

    (School of Mechanical Engineering, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea)

Abstract

Herein, 50 articles published over the past 20 years on using large eddy simulation (LES) for the internal cooling passage of a gas turbine, especially the mid-chord ribbed channel, are reviewed for the first time. First, the numerical challenges of performing LES on a ribbed channel and experimental verification are summarized. Next, LES data and the major engineering findings that are difficult to obtain experimentally or using Reynolds-averaged Navier–Stokes simulation (RANS) are covered, and heat transfer on and inside the rib, and the effects of rotation and buoyancy are discussed. Next, recent LES studies related to the shape of the ribbed channel are reviewed, and finally, the contribution of using LES for research on the internal cooling of gas turbines in the future, including those with ribbed channels, is anticipated.

Suggested Citation

  • Joon Ahn, 2023. "Large Eddy Simulation of Flow and Heat Transfer in a Ribbed Channel for the Internal Cooling Passage of a Gas Turbine Blade: A Review," Energies, MDPI, vol. 16(9), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3656-:d:1131560
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3656/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3656/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sharma, Sanjay K. & Kalamkar, Vilas R., 2016. "Computational Fluid Dynamics approach in thermo-hydraulic analysis of flow in ducts with rib roughened walls – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 756-788.
    2. Abhishek G. Ramgadia & Arun K. Saha, 2012. "Large Eddy Simulation of Turbulent Flow and Heat Transfer in a Ribbed Coolant Passage," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-21, January.
    3. Joon Ahn, 2022. "Large Eddy Simulation of Film Cooling: A Review," Energies, MDPI, vol. 15(23), pages 1-21, November.
    4. Joon Ahn & Jeong Chul Song & Joon Sik Lee, 2021. "Dependence of Conjugate Heat Transfer in Ribbed Channel on Thermal Conductivity of Channel Wall: An LES Study," Energies, MDPI, vol. 14(18), pages 1-18, September.
    5. Jin, Dongxu & Zuo, Jianguo & Quan, Shenglin & Xu, Shiming & Gao, Hao, 2017. "Thermohydraulic performance of solar air heater with staggered multiple V-shaped ribs on the absorber plate," Energy, Elsevier, vol. 127(C), pages 68-77.
    6. Kenichiro Takeishi, 2022. "Evolution of Turbine Cooled Vanes and Blades Applied for Large Industrial Gas Turbines and Its Trend toward Carbon Neutrality," Energies, MDPI, vol. 15(23), pages 1-35, November.
    7. Joon Ahn & Jeong Chul Song & Joon Sik Lee, 2021. "Fully Coupled Large Eddy Simulation of Conjugate Heat Transfer in a Ribbed Channel with a 0.1 Blockage Ratio," Energies, MDPI, vol. 14(8), pages 1-17, April.
    8. Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Kumar, Sachin, 2021. "Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linqi Shui & Zhongkai Hu & Hang Song & Zhi Zhai & Jiatao Wang, 2023. "Study on Flow and Heat Transfer Characteristics and Anti-Clogging Performance of Tree-Like Branching Microchannels," Energies, MDPI, vol. 16(14), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Arunachala, U.C., 2022. "Thermo-hydraulic and exergetic performance of a cost-effective solar air heater: CFD and experimental study," Renewable Energy, Elsevier, vol. 184(C), pages 627-641.
    2. Kumar, Rajneesh & Kumar, Anoop & Goel, Varun, 2019. "Performance improvement and development of correlation for friction factor and heat transfer using computational fluid dynamics for ribbed triangular duct solar air heater," Renewable Energy, Elsevier, vol. 131(C), pages 788-799.
    3. Josip Orović & Vedran Mrzljak & Igor Poljak, 2018. "Efficiency and Losses Analysis of Steam Air Heater from Marine Steam Propulsion Plant," Energies, MDPI, vol. 11(11), pages 1-18, November.
    4. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Singh Bisht, Vijay & Kumar Patil, Anil & Gupta, Anirudh, 2018. "Review and performance evaluation of roughened solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 954-977.
    6. Artur S. Bartosik, 2023. "Numerical Heat Transfer and Fluid Flow: New Advances," Energies, MDPI, vol. 16(14), pages 1-7, July.
    7. Prasad, Jay Shankar & Datta, Aparesh & Mondal, Sirshendu, 2024. "Flow and thermal behavior of solar air heater with grooved roughness," Renewable Energy, Elsevier, vol. 220(C).
    8. Yu-Jin Kim & Kwang-Seob Lee & Libing Yang & Evgueniy Entchev & Eun-Chul Kang & Euy-Joon Lee, 2020. "Validation and Numerical Sensitivity Study of Air Baffle Photovoltaic-Thermal Module," Energies, MDPI, vol. 13(8), pages 1-13, April.
    9. Hassan, Ahmad Kamal & Muzaffarul Hasan, M. & Emran Khan, Mohammad, 2021. "Parametric investigation and correlation development for heat transfer and friction factor in multiple arc dimple roughened solar air duct," Renewable Energy, Elsevier, vol. 174(C), pages 403-425.
    10. Poongavanam, Ganesh Kumar & Panchabikesan, Karthik & Leo, Anto Joseph Deeyoko & Ramalingam, Velraj, 2018. "Experimental investigation on heat transfer augmentation of solar air heater using shot blasted V-corrugated absorber plate," Renewable Energy, Elsevier, vol. 127(C), pages 213-229.
    11. Prasad, Jay Shankar & Datta, Aparesh & Mondal, Sirshendu, 2024. "Numerical analysis of a solar air heater with offset transverse ribs placed near the absorber plate," Renewable Energy, Elsevier, vol. 227(C).
    12. Varun Pratap Singh & Siddharth Jain & Ashish Karn & Ashwani Kumar & Gaurav Dwivedi & Chandan Swaroop Meena & Nitesh Dutt & Aritra Ghosh, 2022. "Recent Developments and Advancements in Solar Air Heaters: A Detailed Review," Sustainability, MDPI, vol. 14(19), pages 1-55, September.
    13. Mustafa Alaskari & Arwa M. Kadhim & Ammar A. Farhan & Moustafa Al-Damook & Mansour Al Qubeissi, 2022. "Performance Evaluation of Roughened Solar Air Heaters for Stretched Parameters," Clean Technol., MDPI, vol. 4(2), pages 1-15, June.
    14. Zhang, Pu & Xia, Peng & Guo, Xueyan & Xie, Shaozhang & Ma, Wensheng, 2022. "A CFD-adjoint reverse design of transverse rib profile for enhancing thermo-hydraulic performance in the solar air heater," Renewable Energy, Elsevier, vol. 198(C), pages 587-601.
    15. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    16. Jin, Dongxu & Quan, Shenglin & Zuo, Jianguo & Xu, Shiming, 2019. "Numerical investigation of heat transfer enhancement in a solar air heater roughened by multiple V-shaped ribs," Renewable Energy, Elsevier, vol. 134(C), pages 78-88.
    17. Kumar, Rajneesh & Goel, Varun, 2021. "Unconventional solar air heater with triangular flow-passage: A CFD based comparative performance assessment of different cross-sectional rib-roughnesses," Renewable Energy, Elsevier, vol. 172(C), pages 1267-1278.
    18. Dong, Zhimin & Du, Qinglin & Liu, Peng & Liu, Zhichun & Liu, Wei, 2023. "A numerical investigation and irreversibility optimization of constantly grooved solar air heaters," Renewable Energy, Elsevier, vol. 207(C), pages 629-646.
    19. Joon Ahn & Jeong Chul Song & Joon Sik Lee, 2021. "Dependence of Conjugate Heat Transfer in Ribbed Channel on Thermal Conductivity of Channel Wall: An LES Study," Energies, MDPI, vol. 14(18), pages 1-18, September.
    20. Azadani, Leila N. & Gharouni, Nadiya, 2021. "Multi objective optimization of cylindrical shape roughness parameters in a solar air heater," Renewable Energy, Elsevier, vol. 179(C), pages 1156-1168.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3656-:d:1131560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.