IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i6p1386-d1609943.html
   My bibliography  Save this article

Large Eddy Simulation Approaches for Trailing-Edge Heat Transfer in Gas Turbine Blades: A Review

Author

Listed:
  • Joon Ahn

    (School of Mechanical Engineering, Kookmin University, Seoul 02707, Republic of Korea)

Abstract

The trailing edge of gas turbine blades encounters concentrated heat loads, necessitating cooling techniques distinct from those used in mid-chord regions. Narrow cooling channels in these areas typically incorporate pin fins or dimples for internal cooling. In contrast, external cooling relies on cutback film cooling configurations, which differ significantly from mid-chord designs. Large eddy simulation (LES) has emerged as a powerful tool for investigating heat transfer in these challenging environments, capturing intricate flow phenomena and turbulence effects that Reynolds-Averaged Navier–Stokes (RANS) simulations often cannot resolve. This review synthesizes findings from 54 LES-based studies on trailing edge cooling, focusing on three key configurations: pin fin arrays, dimpled surfaces, and cutback film cooling. LES consistently demonstrated higher accuracy in predicting heat transfer and cooling effectiveness, outperforming RANS by resolving complex flow structures such as horseshoe vortices, shear layer vortices, and unique flow interactions inherent to these geometries. Furthermore, LES provided detailed turbulence statistics and local heat transfer distributions, offering critical insights for optimizing and improving predictive models. Beyond its demonstrated capabilities, this review underscores the future potential of LES in advancing shape optimization, transient flow analysis, and multi-physics simulations, including conjugate heat transfer and flow-structure interactions.

Suggested Citation

  • Joon Ahn, 2025. "Large Eddy Simulation Approaches for Trailing-Edge Heat Transfer in Gas Turbine Blades: A Review," Energies, MDPI, vol. 18(6), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1386-:d:1609943
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/6/1386/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/6/1386/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander Mironov & Sergey Isaev & Artem Skrypnik & Igor Popov, 2020. "Numerical and Physical Simulation of Heat Transfer Enhancement Using Oval Dimple Vortex Generators—Review and Recommendations," Energies, MDPI, vol. 13(20), pages 1-15, October.
    2. Li, Bingran & Liu, Cunliang & Ye, Lin & Zhou, Tianliang & Zhang, Fan, 2024. "Evaluation of film cooling effect in multi-row hole configurations on turbine blade leading edge," Energy, Elsevier, vol. 309(C).
    3. Joon Ahn, 2023. "Large Eddy Simulation of Flow and Heat Transfer in a Ribbed Channel for the Internal Cooling Passage of a Gas Turbine Blade: A Review," Energies, MDPI, vol. 16(9), pages 1-20, April.
    4. Chien-Shing Lee & Tom I. -P. Shih & Kenneth Mark Bryden & Richard P. Dalton & Richard A. Dennis, 2023. "Strongly Heated Turbulent Flow in a Channel with Pin Fins," Energies, MDPI, vol. 16(3), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linqi Shui & Zhongkai Hu & Hang Song & Zhi Zhai & Jiatao Wang, 2023. "Study on Flow and Heat Transfer Characteristics and Anti-Clogging Performance of Tree-Like Branching Microchannels," Energies, MDPI, vol. 16(14), pages 1-22, July.
    2. Artur S. Bartosik, 2023. "Numerical Heat Transfer and Fluid Flow: New Advances," Energies, MDPI, vol. 16(14), pages 1-7, July.
    3. Oleg A. Kolenchukov & Kirill A. Bashmur & Sergei O. Kurashkin & Elena V. Tsygankova & Natalia A. Shepeta & Roman B. Sergienko & Praskovya L. Pavlova & Roman A. Vaganov, 2023. "Numerical and Experimental Study of Heat Transfer in Pyrolysis Reactor Heat Exchange Channels with Different Hemispherical Protrusion Geometries," Energies, MDPI, vol. 16(16), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1386-:d:1609943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.