IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3445-d1123512.html
   My bibliography  Save this article

Computational Analysis of the Automation Strategies of Temperatures of Supplied Air, Chilled and Condensation Water in Commercial Buildings

Author

Listed:
  • Javier Diaz-Valdivia

    (Polytechnic School, University of São Paulo, São Paulo 05508-010, Brazil)

  • Flávio A. S. Fiorelli

    (Polytechnic School, University of São Paulo, São Paulo 05508-010, Brazil)

Abstract

The automation strategies currently used in HVAC systems do not control the system temperature variables (supplied air, chilled, and condensation water temperatures) in an optimized way. Normally, these temperatures are fixed in design conditions, or vary according to the weather conditions. However, studies demonstrate that adequate control of these three temperatures can provide significant reductions in the energy consumption of the air conditioner system. Therefore, this work analyzes the benefits of individualized and integrated automation of these three variable temperatures in different tropical and subtropical weather conditions through computer simulation for a typical commercial building. The results of integrated automation show savings in consumption between 5.03% and 19.68% compared to a fixed control, and between 3.22% and 8.21% compared to a weather-based control alone, showing that the integrated strategies are better than both models adopted as market benchmarks.

Suggested Citation

  • Javier Diaz-Valdivia & Flávio A. S. Fiorelli, 2023. "Computational Analysis of the Automation Strategies of Temperatures of Supplied Air, Chilled and Condensation Water in Commercial Buildings," Energies, MDPI, vol. 16(8), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3445-:d:1123512
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3445/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3445/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ke, Yu-Pei & Mumma, Stanley A., 1997. "Optimized supply-air temperature (SAT) in variable-air-volume (VAV) systems," Energy, Elsevier, vol. 22(6), pages 601-614.
    2. Li, Nan & Yang, Zheng & Becerik-Gerber, Burcin & Tang, Chao & Chen, Nanlin, 2015. "Why is the reliability of building simulation limited as a tool for evaluating energy conservation measures?," Applied Energy, Elsevier, vol. 159(C), pages 196-205.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    2. Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
    3. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    4. Glasgo, Brock & Hendrickson, Chris & Azevedo, Inês Lima, 2017. "Assessing the value of information in residential building simulation: Comparing simulated and actual building loads at the circuit level," Applied Energy, Elsevier, vol. 203(C), pages 348-363.
    5. Pedro Paulo Fernandes da Silva & Alberto Hernandez Neto & Ildo Luis Sauer, 2021. "Evaluation of Model Calibration Method for Simulation Performance of a Public Hospital in Brazil," Energies, MDPI, vol. 14(13), pages 1-20, June.
    6. Chen, Xi & Yang, Hongxing & Wang, Yuanhao, 2017. "Parametric study of passive design strategies for high-rise residential buildings in hot and humid climates: miscellaneous impact factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 442-460.
    7. Gourlis, Georgios & Kovacic, Iva, 2016. "A study on building performance analysis for energy retrofit of existing industrial facilities," Applied Energy, Elsevier, vol. 184(C), pages 1389-1399.
    8. Kim, Yang-Seon & Heidarinejad, Mohammad & Dahlhausen, Matthew & Srebric, Jelena, 2017. "Building energy model calibration with schedules derived from electricity use data," Applied Energy, Elsevier, vol. 190(C), pages 997-1007.
    9. Mossolly, M. & Ghali, K. & Ghaddar, N., 2009. "Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm," Energy, Elsevier, vol. 34(1), pages 58-66.
    10. Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.
    11. Glasgo, Brock & Khan, Nyla & Azevedo, Inês Lima, 2020. "Simulating a residential building stock to support regional efficiency policy," Applied Energy, Elsevier, vol. 261(C).
    12. Kusiak, Andrew & Tang, Fan & Xu, Guanglin, 2011. "Multi-objective optimization of HVAC system with an evolutionary computation algorithm," Energy, Elsevier, vol. 36(5), pages 2440-2449.
    13. Sunil Kumar Mohapatra & Sushruta Mishra & Hrudaya Kumar Tripathy & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "A Pragmatic Investigation of Energy Consumption and Utilization Models in the Urban Sector Using Predictive Intelligence Approaches," Energies, MDPI, vol. 14(13), pages 1-28, June.
    14. Wang, Wei & Chen, Jiayu & Huang, Gongsheng & Lu, Yujie, 2017. "Energy efficient HVAC control for an IPS-enabled large space in commercial buildings through dynamic spatial occupancy distribution," Applied Energy, Elsevier, vol. 207(C), pages 305-323.
    15. Kusiak, Andrew & Li, Mingyang, 2009. "Optimal decision making in ventilation control," Energy, Elsevier, vol. 34(11), pages 1835-1845.
    16. Ang, Yu Qian & Berzolla, Zachary Michael & Reinhart, Christoph F., 2020. "From concept to application: A review of use cases in urban building energy modeling," Applied Energy, Elsevier, vol. 279(C).
    17. Okochi, Godwine Swere & Yao, Ye, 2016. "A review of recent developments and technological advancements of variable-air-volume (VAV) air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 784-817.
    18. Rahmah Sumantri, 2022. "Reliability Analysis of State Building in Banjar District," Technium, Technium Science, vol. 4(8), pages 33-55.
    19. Soltanaghaei, Elahe & Whitehouse, Kamin, 2018. "Practical occupancy detection for programmable and smart thermostats," Applied Energy, Elsevier, vol. 220(C), pages 842-855.
    20. Yang, Tao & Pan, Yiqun & Mao, Jiachen & Wang, Yonglong & Huang, Zhizhong, 2016. "An automated optimization method for calibrating building energy simulation models with measured data: Orientation and a case study," Applied Energy, Elsevier, vol. 179(C), pages 1220-1231.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3445-:d:1123512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.