IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2609-d1092927.html
   My bibliography  Save this article

Optimal Incorporation of Intermittent Renewable Energy Storage Units and Green Hydrogen Production in the Electrical Sector

Author

Listed:
  • Tania Itzel Serrano-Arévalo

    (Department of Chemical Engineering, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58060, Mexico)

  • Javier Tovar-Facio

    (Faculty of Chemical Sciences, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico)

  • José María Ponce-Ortega

    (Department of Chemical Engineering, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58060, Mexico)

Abstract

This paper presents a mathematical programming approach for the strategic planning of hydrogen production from renewable energies and its use in electric power generation in conventional technologies. The proposed approach aims to determine the optimal selection of the different types of technologies, electrolyzers and storage units (energy and hydrogen). The approach considers the implementation of an optimization methodology to select a representative data set that characterizes the total annual demand. The economic objective aims to determine the minimum cost, which is composed of the capital costs in the acquisition of units, operating costs of such units, costs of production and transmission of energy, as well as the cost associated with the emissions generated, which is related to an environmental tax. A specific case study is presented in the Mexican peninsula and the results show that it is possible to produce hydrogen at a minimum sale price of 4200 $/tonH 2 , with a total cost of $5.1687 × 10 6 and 2.5243 × 10 5 tonCO 2eq . In addition, the financial break-even point corresponds to a sale price of 6600 $/tonH 2 . The proposed model determines the trade-offs between the cost and the emissions generated.

Suggested Citation

  • Tania Itzel Serrano-Arévalo & Javier Tovar-Facio & José María Ponce-Ortega, 2023. "Optimal Incorporation of Intermittent Renewable Energy Storage Units and Green Hydrogen Production in the Electrical Sector," Energies, MDPI, vol. 16(6), pages 1-25, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2609-:d:1092927
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2609/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2609/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Keck, Felix & Lenzen, Manfred & Vassallo, Anthony & Li, Mengyu, 2019. "The impact of battery energy storage for renewable energy power grids in Australia," Energy, Elsevier, vol. 173(C), pages 647-657.
    2. PraveenKumar, Seepana & Agyekum, Ephraim Bonah & Kumar, Abhinav & Velkin, Vladimir Ivanovich, 2023. "Performance evaluation with low-cost aluminum reflectors and phase change material integrated to solar PV modules using natural air convection: An experimental investigation," Energy, Elsevier, vol. 266(C).
    3. Nepal, Rabindra & Paija, Nirash, 2019. "Energy security, electricity, population and economic growth: The case of a developing South Asian resource-rich economy," Energy Policy, Elsevier, vol. 132(C), pages 771-781.
    4. Paul E. Brockway & Anne Owen & Lina I. Brand-Correa & Lukas Hardt, 2019. "Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources," Nature Energy, Nature, vol. 4(7), pages 612-621, July.
    5. Moretti, Luca & Astolfi, Marco & Vergara, Claudio & Macchi, Ennio & Pérez-Arriaga, Josè Ignacio & Manzolini, Giampaolo, 2019. "A design and dispatch optimization algorithm based on mixed integer linear programming for rural electrification," Applied Energy, Elsevier, vol. 233, pages 1104-1121.
    6. Brauers, Hanna & Oei, Pao-Yu, 2020. "The political economy of coal in Poland: Drivers and barriers for a shift away from fossil fuels," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 144.
    7. Namahoro, J.P. & Wu, Q. & Zhou, N. & Xue, S., 2021. "Impact of energy intensity, renewable energy, and economic growth on CO2 emissions: Evidence from Africa across regions and income levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    8. Moradpoor, Iraj & Syri, Sanna & Santasalo-Aarnio, Annukka, 2023. "Green hydrogen production for oil refining – Finnish case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    9. Ding, Suiting & Zhang, Ming & Song, Yan, 2019. "Exploring China's carbon emissions peak for different carbon tax scenarios," Energy Policy, Elsevier, vol. 129(C), pages 1245-1252.
    10. Li, Feng & Zhang, Danlu & Zhang, Jinyu & Kou, Gang, 2022. "Measuring the energy production and utilization efficiency of Chinese thermal power industry with the fixed-sum carbon emission constraint," International Journal of Production Economics, Elsevier, vol. 252(C).
    11. Brauers, Hanna & Oei, Pao-Yu, 2020. "The political economy of coal in Poland: Drivers and barriers for a shift away from fossil fuels," Energy Policy, Elsevier, vol. 144(C).
    12. Anna Komarnicka & Anna Murawska, 2021. "Comparison of Consumption and Renewable Sources of Energy in European Union Countries—Sectoral Indicators, Economic Conditions and Environmental Impacts," Energies, MDPI, vol. 14(12), pages 1-24, June.
    13. Florinda Martins & Carlos Felgueiras & Miroslava Smitkova & Nídia Caetano, 2019. "Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries," Energies, MDPI, vol. 12(6), pages 1-11, March.
    14. Kleinberg, R.L. & Paltsev, S. & Ebinger, C.K.E. & Hobbs, D.A. & Boersma, T., 2018. "Tight oil market dynamics: Benchmarks, breakeven points, and inelasticities," Energy Economics, Elsevier, vol. 70(C), pages 70-83.
    15. Kosmas A. Kavadias & Vasileios Kosmas & Stefanos Tzelepis, 2022. "Sizing, Optimization, and Financial Analysis of a Green Hydrogen Refueling Station in Remote Regions," Energies, MDPI, vol. 15(2), pages 1-22, January.
    16. Bismark Singh & Bernard Knueven, 2021. "Lagrangian relaxation based heuristics for a chance-constrained optimization model of a hybrid solar-battery storage system," Journal of Global Optimization, Springer, vol. 80(4), pages 965-989, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdin, Zainul, 2024. "Empowering the hydrogen economy: The transformative potential of blockchain technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    2. Zhiyong Li & Wenbin Wu & Yang Si & Xiaotao Chen, 2023. "Optimal Siting and Sizing of Hydrogen Production Modules in Distribution Networks with Photovoltaic Uncertainties," Energies, MDPI, vol. 16(22), pages 1-15, November.
    3. Andrea Dumančić & Nela Vlahinić Lenz & Lahorko Wagmann, 2024. "Profitability Model of Green Hydrogen Production on an Existing Wind Power Plant Location," Sustainability, MDPI, vol. 16(4), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katarzyna Chudy-Laskowska & Tomasz Pisula, 2022. "An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation," Energies, MDPI, vol. 15(19), pages 1-23, October.
    2. Aurelia Rybak & Aleksandra Rybak, 2021. "Methods of Ensuring Energy Security with the Use of Hard Coal—The Case of Poland," Energies, MDPI, vol. 14(18), pages 1-25, September.
    3. T. B. White & S. O. Petrovan & L. A. Bennun & T. Butterworth & A. P. Christie & H. Downey & S. B. Hunter & B. R. Jobson & S. O. S. E. zu Ermgassen & W. J. Sutherland, 2023. "Principles for using evidence to improve biodiversity impact mitigation by business," Business Strategy and the Environment, Wiley Blackwell, vol. 32(7), pages 4719-4733, November.
    4. Kateryna Redko & Olena Borychenko & Anatolii Cherniavskyi & Volodymyr Saienko & Serhii Dudnikov, 2023. "Comparative Analysis of Innovative Development Strategies of Fuel and Energy Complex of Ukraine and the EU Countries: International Experience," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 301-308, March.
    5. Jingna Kou & Wei Li & Rui Zhang & Dingxiong Shi, 2023. "Hydrogen as a Transition Tool in a Fossil Fuel Resource Region: Taking China’s Coal Capital Shanxi as an Example," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    6. Piotr F. Borowski, 2022. "Management of Energy Enterprises in Zero-Emission Conditions: Bamboo as an Innovative Biomass for the Production of Green Energy by Power Plants," Energies, MDPI, vol. 15(5), pages 1-16, March.
    7. Duarte, Rosa & Serrano, Ana, 2021. "Environmental analysis of structural and technological change in a context of trade expansion: Lessons from the EU enlargement," Energy Policy, Elsevier, vol. 150(C).
    8. Nachatter Singh Garha, 2022. "From Decarbonization to Depopulation: An Emerging Challenge for the Carbon-Intensive Regions under the Energy Transition in Spain," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    9. Mariusz Pyra, 2023. "Simulation of the Progress of the Decarbonization Process in Poland’s Road Transport Sector," Energies, MDPI, vol. 16(12), pages 1-21, June.
    10. Patrycjusz Zarębski & Dominik Katarzyński, 2023. "A Theoretical Framework for a Local Energy Innovation System Based on the Renewable Energy Case of Poland," Energies, MDPI, vol. 16(9), pages 1-24, April.
    11. Sylwia Mrozowska & Jan A. Wendt & Krzysztof Tomaszewski, 2021. "The Challenges of Poland’s Energy Transition," Energies, MDPI, vol. 14(23), pages 1-22, December.
    12. Wadim Strielkowski & Lubomír Civín & Elena Tarkhanova & Manuela Tvaronavičienė & Yelena Petrenko, 2021. "Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review," Energies, MDPI, vol. 14(24), pages 1-24, December.
    13. Furmankiewicz, Marek & Hewitt, Richard J. & Kazak, Jan K., 2021. "Can rural stakeholders drive the low-carbon transition? Analysis of climate-related activities planned in local development strategies in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Oskar Juszczyk & Juliusz Juszczyk & Sławomir Juszczyk & Josu Takala, 2022. "Barriers for Renewable Energy Technologies Diffusion: Empirical Evidence from Finland and Poland," Energies, MDPI, vol. 15(2), pages 1-14, January.
    15. Sandro Sacchelli & Valerii Havrysh & Antonina Kalinichenko & Dariusz Suszanowicz, 2022. "Ground-Mounted Photovoltaic and Crop Cultivation: A Comparative Analysis," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    16. Ewa Chomać-Pierzecka, 2023. "Pharmaceutical Companies in the Light of the Idea of Sustainable Development—An Analysis of Selected Aspects of Sustainable Management," Sustainability, MDPI, vol. 15(11), pages 1-23, May.
    17. Daniel Baron & Walter Bartl, 2024. "The Coal Phase-Out in Germany and Its Regional Impact on Economic Worries," Social Sciences, MDPI, vol. 13(7), pages 1-26, June.
    18. Ewa Chomać-Pierzecka & Hubert Gąsiński & Joanna Rogozińska-Mitrut & Dariusz Soboń & Sebastian Zupok, 2023. "Review of Selected Aspects of Wind Energy Market Development in Poland and Lithuania in the Face of Current Challenges," Energies, MDPI, vol. 16(1), pages 1-17, January.
    19. Piotr Bórawski & Aneta Bełdycka-Bórawska & Lisa Holden & Tomasz Rokicki, 2022. "The Role of Renewable Energy Sources in Electricity Production in Poland and the Background of Energy Policy of the European Union at the Beginning of the COVID-19 Crisis," Energies, MDPI, vol. 15(22), pages 1-17, November.
    20. Valeria Jana Schwanitz & Tadeusz Józef Rudek & Wit Hubert & August Hubert Wierling, 2022. "The Development of Citizen-Installed Renewable Energy Capacities in Former Eastern Bloc Countries—The Case of Poland," Energies, MDPI, vol. 15(7), pages 1-29, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2609-:d:1092927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.