IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v173y2019icp647-657.html
   My bibliography  Save this article

The impact of battery energy storage for renewable energy power grids in Australia

Author

Listed:
  • Keck, Felix
  • Lenzen, Manfred
  • Vassallo, Anthony
  • Li, Mengyu

Abstract

Electrical energy storage (EES) has the potential to enable a transition to clean energy in the future as it brings flexibility into the electricity network. Uncertainties exist around EES regarding technology, costs, business models and market structures but experts agree on EES being beneficial. This study offers an economic analysis of the role of EES in low-carbon electricity supply. A GIS-supported hourly simulation study of Australia assesses the impact of adding EES to wind and solar generation on levelised cost of electricity (LCOE), installed capacity, generation mix and energy spillage. The study finds that EES deployment is able to lower LCOE in scenarios with high penetration of renewable sources. In the case study of Australia, it is found that EES between 90 and 180 GWh capacity can be economic for cost levels below 1,000 AU$ kWh−1. In addition, the study finds that EES can reduce LCOE by 13–22%, reduce installed capacity by up to 22%, and reduce spilled energy by up to 76%. It is shown that the generation mix is highly influenced by the magnitude of EES deployed.

Suggested Citation

  • Keck, Felix & Lenzen, Manfred & Vassallo, Anthony & Li, Mengyu, 2019. "The impact of battery energy storage for renewable energy power grids in Australia," Energy, Elsevier, vol. 173(C), pages 647-657.
  • Handle: RePEc:eee:energy:v:173:y:2019:i:c:p:647-657
    DOI: 10.1016/j.energy.2019.02.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219302427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huva, Robert & Dargaville, Roger & Caine, Simon, 2012. "Prototype large-scale renewable energy system optimisation for Victoria, Australia," Energy, Elsevier, vol. 41(1), pages 326-334.
    2. Riesz, Jenny & Elliston, Ben, 2016. "Research and deployment priorities for renewable technologies: Quantifying the importance of various renewable technologies for low cost, high renewable electricity systems in an Australian case study," Energy Policy, Elsevier, vol. 98(C), pages 298-308.
    3. Yekini Suberu, Mohammed & Wazir Mustafa, Mohd & Bashir, Nouruddeen, 2014. "Energy storage systems for renewable energy power sector integration and mitigation of intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 499-514.
    4. Tarroja, Brian & Shaffer, Brendan P. & Samuelsen, Scott, 2018. "Resource portfolio design considerations for materially-efficient planning of 100% renewable electricity systems," Energy, Elsevier, vol. 157(C), pages 460-471.
    5. William A. Braff & Joshua M. Mueller & Jessika E. Trancik, 2016. "Value of storage technologies for wind and solar energy," Nature Climate Change, Nature, vol. 6(10), pages 964-969, October.
    6. Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
    7. Ippolito, M.G. & Di Silvestre, M.L. & Riva Sanseverino, E. & Zizzo, G. & Graditi, G., 2014. "Multi-objective optimized management of electrical energy storage systems in an islanded network with renewable energy sources under different design scenarios," Energy, Elsevier, vol. 64(C), pages 648-662.
    8. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    9. Jeppesen, M. & Brear, M.J. & Chattopadhyay, D. & Manzie, C. & Dargaville, R. & Alpcan, T., 2016. "Least cost, utility scale abatement from Australia's NEM (National Electricity Market). Part 1: Problem formulation and modelling," Energy, Elsevier, vol. 101(C), pages 606-620.
    10. Elliston, Ben & Diesendorf, Mark & MacGill, Iain, 2012. "Simulations of scenarios with 100% renewable electricity in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 45(C), pages 606-613.
    11. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2013. "Least cost 100% renewable electricity scenarios in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 270-282.
    12. Nicholls, A. & Sharma, R. & Saha, T.K., 2015. "Financial and environmental analysis of rooftop photovoltaic installations with battery storage in Australia," Applied Energy, Elsevier, vol. 159(C), pages 252-264.
    13. Zhao, Haoran & Wu, Qiuwei & Hu, Shuju & Xu, Honghua & Rasmussen, Claus Nygaard, 2015. "Review of energy storage system for wind power integration support," Applied Energy, Elsevier, vol. 137(C), pages 545-553.
    14. Lu, Bin & Blakers, Andrew & Stocks, Matthew, 2017. "90–100% renewable electricity for the South West Interconnected System of Western Australia," Energy, Elsevier, vol. 122(C), pages 663-674.
    15. Khalilpour, Kaveh Rajab & Vassallo, Anthony, 2016. "Technoeconomic parametric analysis of PV-battery systems," Renewable Energy, Elsevier, vol. 97(C), pages 757-768.
    16. Pfeifer, Antun & Dobravec, Viktorija & Pavlinek, Luka & Krajačić, Goran & Duić, Neven, 2018. "Integration of renewable energy and demand response technologies in interconnected energy systems," Energy, Elsevier, vol. 161(C), pages 447-455.
    17. Brear, M.J. & Jeppesen, M. & Chattopadhyay, D. & Manzie, C. & Alpcan, T. & Dargaville, R., 2016. "Least cost, utility scale abatement from Australia's NEM (National Electricity Market). Part 2: Scenarios and policy implications," Energy, Elsevier, vol. 101(C), pages 621-628.
    18. Battke, Benedikt & Schmidt, Tobias S. & Grosspietsch, David & Hoffmann, Volker H., 2013. "A review and probabilistic model of lifecycle costs of stationary batteries in multiple applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 240-250.
    19. Speidel, Stuart & Bräunl, Thomas, 2016. "Leaving the grid—The effect of combining home energy storage with renewable energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1213-1224.
    20. Blakers, Andrew & Lu, Bin & Stocks, Matthew, 2017. "100% renewable electricity in Australia," Energy, Elsevier, vol. 133(C), pages 471-482.
    21. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2012. "Assessment of utility energy storage options for increased renewable energy penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4141-4147.
    22. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    23. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2016. "Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building," Applied Energy, Elsevier, vol. 171(C), pages 153-171.
    24. Nunes, Juliana Barbosa & Mahmoudi, Nadali & Saha, Tapan Kumar & Chattopadhyay, Debabrata, 2018. "A stochastic integrated planning of electricity and natural gas networks for Queensland, Australia considering high renewable penetration," Energy, Elsevier, vol. 153(C), pages 539-553.
    25. Shafiullah, G.M. & Amanullah, M.T.O. & Shawkat Ali, A.B.M. & Jarvis, Dennis & Wolfs, Peter, 2012. "Prospects of renewable energy – a feasibility study in the Australian context," Renewable Energy, Elsevier, vol. 39(1), pages 183-197.
    26. Luburić, Zora & Pandžić, Hrvoje & Plavšić, Tomislav & Teklić, Ljupko & Valentić, Vladimir, 2018. "Role of energy storage in ensuring transmission system adequacy and security," Energy, Elsevier, vol. 156(C), pages 229-239.
    27. Jason Moore & Bahman Shabani, 2016. "A Critical Study of Stationary Energy Storage Policies in Australia in an International Context: The Role of Hydrogen and Battery Technologies," Energies, MDPI, vol. 9(9), pages 1-28, August.
    28. McConnell, Dylan & Forcey, Tim & Sandiford, Mike, 2015. "Estimating the value of electricity storage in an energy-only wholesale market," Applied Energy, Elsevier, vol. 159(C), pages 422-432.
    29. Jenny Riesz & Michael Milligan, 2015. "Designing electricity markets for a high penetration of variable renewables," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(3), pages 279-289, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keck, Felix & Lenzen, Manfred, 2021. "Drivers and benefits of shared demand-side battery storage – an Australian case study," Energy Policy, Elsevier, vol. 149(C).
    2. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).
    3. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    4. Yousefzadeh, Moslem & Lenzen, Manfred, 2019. "Performance of concentrating solar power plants in a whole-of-grid context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Tino Aboumahboub & Robert J. Brecha & Himalaya Bir Shrestha & Ursula Fuentes & Andreas Geiges & William Hare & Michiel Schaeffer & Lara Welder & Matthew J. Gidden, 2020. "Decarbonization of Australia’s Energy System: Integrated Modeling of the Transformation of Electricity, Transportation, and Industrial Sectors," Energies, MDPI, vol. 13(15), pages 1-39, July.
    6. Howard, Bahareh Sara & Hamilton, Nicholas E. & Diesendorf, Mark & Wiedmann, Thomas, 2018. "Modeling the carbon budget of the Australian electricity sector's transition to renewable energy," Renewable Energy, Elsevier, vol. 125(C), pages 712-728.
    7. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    8. Henning Meschede & Paul Bertheau & Siavash Khalili & Christian Breyer, 2022. "A review of 100% renewable energy scenarios on islands," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    9. De Rosa, Luca & Castro, Rui, 2020. "Forecasting and assessment of the 2030 australian electricity mix paths towards energy transition," Energy, Elsevier, vol. 205(C).
    10. Nzotcha, Urbain & Kenfack, Joseph & Blanche Manjia, Marceline, 2019. "Integrated multi-criteria decision making methodology for pumped hydro-energy storage plant site selection from a sustainable development perspective with an application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 930-947.
    11. Kiwan, Suhil & Al-Gharibeh, Elyasa, 2020. "Jordan toward a 100% renewable electricity system," Renewable Energy, Elsevier, vol. 147(P1), pages 423-436.
    12. Palmer, Graham, 2017. "An input-output based net-energy assessment of an electricity supply industry," Energy, Elsevier, vol. 141(C), pages 1504-1516.
    13. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    14. Jacobson, Mark Z. & Delucchi, Mark A. & Cameron, Mary A. & Mathiesen, Brian V., 2018. "Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes," Renewable Energy, Elsevier, vol. 123(C), pages 236-248.
    15. Rahman, Md Mustafizur & Oni, Abayomi Olufemi & Gemechu, Eskinder & Kumar, Amit, 2021. "The development of techno-economic models for the assessment of utility-scale electro-chemical battery storage systems," Applied Energy, Elsevier, vol. 283(C).
    16. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    17. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    18. Mehrabankhomartash, Mahmoud & Rayati, Mohammad & Sheikhi, Aras & Ranjbar, Ali Mohammad, 2017. "Practical battery size optimization of a PV system by considering individual customer damage function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 36-50.
    19. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    20. Wu, Yunyang & Reedman, Luke J. & Barrett, Mark A. & Spataru, Catalina, 2018. "Comparison of CST with different hours of storage in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 122(C), pages 487-496.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:173:y:2019:i:c:p:647-657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.