IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2497-d1089208.html
   My bibliography  Save this article

Numerical Investigation of the Long-Term Load Shifting Behaviors within the Borehole Heat Exchanger Array System

Author

Listed:
  • Haijiang Zou

    (School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    Shaanxi Coalbed Methane Development Co., Ltd., Xi’an 710119, China
    These authors contributed equally to this work.)

  • Siyu Guo

    (School of Human Settlements and Civil engineering, Xi’an Jiaotong University, Xi’an 710049, China
    School of Civil Engineering and Architecture, Henan University of Science and Technology, Luoyang 471000, China
    These authors contributed equally to this work.)

  • Ruifeng Wang

    (School of Human Settlements and Civil engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Fenghao Wang

    (School of Human Settlements and Civil engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Zhenxing Shen

    (School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Wanlong Cai

    (School of Human Settlements and Civil engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

In the process of development and utilization of a large-scale borehole heat exchanger (BHE) array system, the phenomenon of load shifting within BHE array can be observed. In this paper, OpenGeoSys software coupled with TESPy toolkit is used to establish a comprehensive numerical model of BHE system (without depicting the heat pump part), and the behaviors of load shifting between BHEs with different design parameters are studied. The results show that the outlet temperature of single BHE and BHE array is generally rising, and the soil temperature around the BHE has accumulated unbalanced heat. The soil temperature near the BHEs array fluctuates more obviously than the single BHE system, and the distribution is uneven. At the end of the 15th year, the soil temperature near the center BHE increased by 2 °C compared with the initial soil temperature, which was more favorable in winter, but was not conducive to the performance improvement in summer. Further analysis by changing the inter-borehole spacing shows that with the increase of the inter-borehole spacing, the load shifting behaviors are gradually weakened, and the maximum shifted load of the central BHE is linear with the change of the inter-borehole spacing. After changing the layout methods, we observe that the more intensive the layout is, the more load shifting behavior is, and the unbalanced rate of soil temperature distribution around the linear layout is lower than other layouts. With the increase in the number of BHEs, the load shifting behaviors are further enhanced. By analyzing the proportion of shifted load amount relative to the average value, it is found that the system will take a longer time to reach heat balance with the increase of BHEs’ number. A shutdown of part of BHEs for a certain period of time will help to improve the long-term operational efficiency of the large-scale shallow ground source heat pump (GSHP) system.

Suggested Citation

  • Haijiang Zou & Siyu Guo & Ruifeng Wang & Fenghao Wang & Zhenxing Shen & Wanlong Cai, 2023. "Numerical Investigation of the Long-Term Load Shifting Behaviors within the Borehole Heat Exchanger Array System," Energies, MDPI, vol. 16(5), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2497-:d:1089208
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2497/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2497/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, Wanlong & Wang, Fenghao & Chen, Shuang & Chen, Chaofan & Liu, Jun & Deng, Jiewen & Kolditz, Olaf & Shao, Haibing, 2021. "Analysis of heat extraction performance and long-term sustainability for multiple deep borehole heat exchanger array: A project-based study," Applied Energy, Elsevier, vol. 289(C).
    2. Xiaoyang Hou & Shuai Zhong & Jian’an Zhao, 2022. "A Critical Review on Decarbonizing Heating in China: Pathway Exploration for Technology with Multi-Sector Applications," Energies, MDPI, vol. 15(3), pages 1-23, February.
    3. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    4. Ling Yang & Kai Zhao & Yankai Zhao & Mengyuan Zhong, 2021. "Identifying Key Factors in Determining Disparities in Energy Consumption in China: A Household Level Analysis," Energies, MDPI, vol. 14(21), pages 1-20, November.
    5. Naicker, Selvaraj S. & Rees, Simon J., 2020. "Long-term high frequency monitoring of a large borehole heat exchanger array," Renewable Energy, Elsevier, vol. 145(C), pages 1528-1542.
    6. Xingfan Pu & Jian Yao & Rongyue Zheng, 2022. "Forecast of Energy Consumption and Carbon Emissions in China’s Building Sector to 2060," Energies, MDPI, vol. 15(14), pages 1-20, July.
    7. Xiaolong Xu & Guohui Feng & Dandan Chi & Ming Liu & Baoyue Dou, 2018. "Optimization of Performance Parameter Design and Energy Use Prediction for Nearly Zero Energy Buildings," Energies, MDPI, vol. 11(12), pages 1-23, November.
    8. Gultekin, Ahmet & Aydin, Murat & Sisman, Altug, 2019. "Effects of arrangement geometry and number of boreholes on thermal interaction coefficient of multi-borehole heat exchangers," Applied Energy, Elsevier, vol. 237(C), pages 163-170.
    9. Hou, Jianchao & Cao, Mengchao & Liu, Pingkuo, 2018. "Development and utilization of geothermal energy in China: Current practices and future strategies," Renewable Energy, Elsevier, vol. 125(C), pages 401-412.
    10. Cai, Wanlong & Wang, Fenghao & Chen, Chaofan & Chen, Shuang & Liu, Jun & Ren, Zhanli & Shao, Haibing, 2022. "Long-term performance evaluation for deep borehole heat exchanger array under different soil thermal properties and system layouts," Energy, Elsevier, vol. 241(C).
    11. Andrea Aquino & Flavio Scrucca & Emanuele Bonamente, 2021. "Sustainability of Shallow Geothermal Energy for Building Air-Conditioning," Energies, MDPI, vol. 14(21), pages 1-30, October.
    12. Pedro J. Zarco-Periñán & Irene M. Zarco-Soto & Fco. Javier Zarco-Soto & Rafael Sánchez-Durán, 2021. "Influence of Population Income on Energy Consumption for Heating and Its CO 2 Emissions in Cities," Energies, MDPI, vol. 14(15), pages 1-18, July.
    13. Niknam, Pouriya H. & Talluri, Lorenzo & Fiaschi, Daniele & Manfrida, Giampaolo, 2021. "Sensitivity analysis and dynamic modelling of the reinjection process in a binary cycle geothermal power plant of Larderello area," Energy, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wen & Zhou, Chaohui & Huang, Xinyu & Luo, Hanbin & Luo, Yongqiang & Cheng, Nan & Tian, Zhiyong & Zhang, Shicong & Fan, Jianhua & Zhang, Ling, 2024. "Study on thermal radius and capacity of multiple deep borehole heat exchangers: Analytical solution, algorithm and application based on Response Factor Matrix method (RFM)," Energy, Elsevier, vol. 296(C).
    2. Chao Yu & Tian Tian & Chengyu Hui & Haochen Huang & Yiqun Zhang, 2022. "Study on Unblocking and Permeability Enhancement Technology with Rotary Water Jet for Low Recharge Efficiency Wells in Sandstone Geothermal Reservoirs," Energies, MDPI, vol. 15(24), pages 1-21, December.
    3. Brown, Christopher S. & Kolo, Isa & Falcone, Gioia & Banks, David, 2023. "Investigating scalability of deep borehole heat exchangers: Numerical modelling of arrays with varied modes of operation," Renewable Energy, Elsevier, vol. 202(C), pages 442-452.
    4. Li, Chao & Jiang, Chao & Guan, Yanling & Chen, Kai & Wu, Jiale & Xu, Jiamin & Wang, Jiachen, 2024. "Simplified method and numerical simulation analysis of pipe-group long-term heat transfer in deep-ground heat exchangers," Energy, Elsevier, vol. 299(C).
    5. Cai, Wanlong & Wang, Fenghao & Chen, Chaofan & Chen, Shuang & Liu, Jun & Ren, Zhanli & Shao, Haibing, 2022. "Long-term performance evaluation for deep borehole heat exchanger array under different soil thermal properties and system layouts," Energy, Elsevier, vol. 241(C).
    6. Zhang, Sheng & Liu, Jun & Wang, Fenghao & Chai, Jiale, 2023. "Design optimization of medium-deep borehole heat exchanger for building heating under climate change," Energy, Elsevier, vol. 282(C).
    7. Cassina, Lisa & Laloui, Lyesse & Rotta Loria, Alessandro F., 2022. "Thermal interactions among vertical geothermal borehole fields," Renewable Energy, Elsevier, vol. 194(C), pages 1204-1220.
    8. Khencha Khadidja & Biara Ratiba Wided & Belmili Hocine, 2020. "Techno-economic study of BIPV in typical Sahara region in Algeria," Journal of Economic Development, Environment and People, Alliance of Central-Eastern European Universities, vol. 9(1), pages 27-57, September.
    9. Ruoping, Yan & Xiaohui, Yu & Fuwei, Lu & Huajun, Wang, 2020. "Study of operation performance for a solar photovoltaic system assisted cooling by ground heat exchangers in arid climate, China," Renewable Energy, Elsevier, vol. 155(C), pages 102-110.
    10. Li, Hui & Ni, Long & Yao, Yang & Sun, Cheng, 2020. "Annual performance experiments of an earth-air heat exchanger fresh air-handling unit in severe cold regions: Operation, economic and greenhouse gas emission analyses," Renewable Energy, Elsevier, vol. 146(C), pages 25-37.
    11. Yan-Jun Shen & Xin Hou & Jiang-Qiang Yuan & Chun-Hu Zhao, 2019. "Experimental Study on Temperature Change and Crack Expansion of High Temperature Granite under Different Cooling Shock Treatments," Energies, MDPI, vol. 12(11), pages 1-17, May.
    12. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    13. Deng, Jiewen & Su, Yangyang & Peng, Chenwei & Qiang, Wenbo & Cai, Wanlong & Wei, Qingpeng & Zhang, Hui, 2023. "How to improve the energy performance of mid-deep geothermal heat pump systems: Optimization of heat pump, system configuration and control strategy," Energy, Elsevier, vol. 285(C).
    14. Krzysztof Wąs & Jan Radoń & Agnieszka Sadłowska-Sałęga, 2020. "Maintenance of Passive House Standard in the Light of Long-Term Study on Energy Use in a Prefabricated Lightweight Passive House in Central Europe," Energies, MDPI, vol. 13(11), pages 1-22, June.
    15. Aizhao Zhou & Xianwen Huang & Wei Wang & Pengming Jiang & Xinwei Li, 2021. "Thermo-Hydraulic Performance of U-Tube Borehole Heat Exchanger with Different Cross-Sections," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    16. Joanna Piotrowska-Woroniak, 2021. "Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)," Energies, MDPI, vol. 14(16), pages 1-32, August.
    17. Ma, Sining & Guo, Siyue & Zheng, Dingqian & Chang, Shiyan & Zhang, Xiliang, 2021. "Roadmap towards clean and low carbon heating to 2035: A provincial analysis in northern China," Energy, Elsevier, vol. 225(C).
    18. Yu, Ruyang & Zhang, Kai & Ramasubramanian, Brindha & Jiang, Shu & Ramakrishna, Seeram & Tang, Yuhang, 2024. "Ensemble learning for predicting average thermal extraction load of a hydrothermal geothermal field: A case study in Guanzhong Basin, China," Energy, Elsevier, vol. 296(C).
    19. Linlin Zhang & Zhonghua Shi & Tianhao Yuan, 2020. "Study on the Coupled Heat Transfer Model Based on Groundwater Advection and Axial Heat Conduction for the Double U-Tube Vertical Borehole Heat Exchanger," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    20. Yujiang He & Xianbiao Bu, 2020. "Performance of Hybrid Single Well Enhanced Geothermal System and Solar Energy for Buildings Heating," Energies, MDPI, vol. 13(10), pages 1-10, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2497-:d:1089208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.