IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2475-d1088337.html
   My bibliography  Save this article

Critical Assessments of the Potential for Integrating Renewable Energy into Isolated Grids on Vietnamese Islands: The Case of the An-Binh Grid

Author

Listed:
  • Hang Thi-Thuy Le

    (Department of Engineering, University of Palermo, 90128 Palermo, Italy
    Institute of Energy Science, Vietnam Academy of Science and Technology, Hanoi 11307, Vietnam)

  • Eleonora Riva Sanseverino

    (Department of Engineering, University of Palermo, 90128 Palermo, Italy
    Consorzio Interuniversitario Nazionale “Energia e Sistemi Elettrici”, 03043 Cassino, Italy)

  • Ninh Quang Nguyen

    (Institute of Energy Science, Vietnam Academy of Science and Technology, Hanoi 11307, Vietnam)

  • Maria Luisa Di Silvestre

    (Department of Engineering, University of Palermo, 90128 Palermo, Italy
    Consorzio Interuniversitario Nazionale “Energia e Sistemi Elettrici”, 03043 Cassino, Italy)

  • Salvatore Favuzza

    (Department of Engineering, University of Palermo, 90128 Palermo, Italy
    Consorzio Interuniversitario Nazionale “Energia e Sistemi Elettrici”, 03043 Cassino, Italy)

  • Binh Doan Van

    (Institute of Energy Science, Vietnam Academy of Science and Technology, Hanoi 11307, Vietnam)

  • Rossano Musca

    (Department of Engineering, University of Palermo, 90128 Palermo, Italy)

Abstract

Renewable electricity for off-grid areas is widely seen as one of the top choices in supporting local economic development in most countries, and so is Vietnam. Over the years, many isolated networks using renewable energy sources have been deployed for off-grid areas in Vietnam. However, the use of these energy sources in Vietnam’s isolated networks is still facing many challenges due to its infancy here. The issues of reliability and vulnerability of these networks are not given the expected attention. Another challenge is that the issues of the operational security of these systems could also be negatively affected by the variable nature of renewable sources, including static and dynamic security. For this reason, this study aims to contribute to a better understanding of integrating renewable energy into isolated networks, and in this case, using solar power for the An-Binh Island grid in Vietnam. The findings from this study suggest that choosing the right structure of the power mix could contribute to improving the operational security of isolated networks. Moreover, several solutions to enhance the reliability of this grid are also proposed. The NEPLAN environment was selected for simulation and analysis for all the scenarios in this study.

Suggested Citation

  • Hang Thi-Thuy Le & Eleonora Riva Sanseverino & Ninh Quang Nguyen & Maria Luisa Di Silvestre & Salvatore Favuzza & Binh Doan Van & Rossano Musca, 2023. "Critical Assessments of the Potential for Integrating Renewable Energy into Isolated Grids on Vietnamese Islands: The Case of the An-Binh Grid," Energies, MDPI, vol. 16(5), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2475-:d:1088337
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2475/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2475/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johansson, Jonas & Hassel, Henrik & Zio, Enrico, 2013. "Reliability and vulnerability analyses of critical infrastructures: Comparing two approaches in the context of power systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 27-38.
    2. Foley, A.M. & Ó Gallachóir, B.P. & Hur, J. & Baldick, R. & McKeogh, E.J., 2010. "A strategic review of electricity systems models," Energy, Elsevier, vol. 35(12), pages 4522-4530.
    3. Crucitti, Paolo & Latora, Vito & Marchiori, Massimo, 2004. "A topological analysis of the Italian electric power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 92-97.
    4. Lucas Cuadra & Sancho Salcedo-Sanz & Javier Del Ser & Silvia Jiménez-Fernández & Zong Woo Geem, 2015. "A Critical Review of Robustness in Power Grids Using Complex Networks Concepts," Energies, MDPI, vol. 8(9), pages 1-55, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianluca Fulli & Marcelo Masera & Catalin Felix Covrig & Francesco Profumo & Ettore Bompard & Tao Huang, 2017. "The EU Electricity Security Decision-Analytic Framework: Status and Perspective Developments," Energies, MDPI, vol. 10(4), pages 1-20, March.
    2. Sperstad, Iver Bakken & Kjølle, Gerd H. & Gjerde, Oddbjørn, 2020. "A comprehensive framework for vulnerability analysis of extraordinary events in power systems," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    3. Guo, Hengdao & Zheng, Ciyan & Iu, Herbert Ho-Ching & Fernando, Tyrone, 2017. "A critical review of cascading failure analysis and modeling of power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 9-22.
    4. Zarghami, Seyed Ashkan & Gunawan, Indra & Schultmann, Frank, 2018. "Integrating entropy theory and cospanning tree technique for redundancy analysis of water distribution networks," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 102-112.
    5. Zhou, Dongyue & Hu, Funian & Wang, Shuliang & Chen, Jun, 2021. "Power network robustness analysis based on electrical engineering and complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    6. Beyza, Jesus & Yusta, Jose M., 2021. "The effects of the high penetration of renewable energies on the reliability and vulnerability of interconnected electric power systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Forsberg, Samuel & Thomas, Karin & Bergkvist, Mikael, 2023. "Power grid vulnerability analysis using complex network theory: A topological study of the Nordic transmission grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    8. Ferrario, E. & Poulos, A. & Castro, S. & de la Llera, J.C. & Lorca, A., 2022. "Predictive capacity of topological measures in evaluating seismic risk and resilience of electric power networks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    9. Beyza, Jesus & Gil, Pablo & Masera, Marcelo & Yusta, Jose M., 2020. "Security assessment of cross-border electricity interconnections," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    10. Ziqi Wang & Jinghan He & Alexandru Nechifor & Dahai Zhang & Peter Crossley, 2017. "Identification of Critical Transmission Lines in Complex Power Networks," Energies, MDPI, vol. 10(9), pages 1-19, August.
    11. Lucas Cuadra & Sancho Salcedo-Sanz & Javier Del Ser & Silvia Jiménez-Fernández & Zong Woo Geem, 2015. "A Critical Review of Robustness in Power Grids Using Complex Networks Concepts," Energies, MDPI, vol. 8(9), pages 1-55, August.
    12. Dong, Zhengcheng & Tian, Meng & Li, Xin & Lai, Jingang & Tang, Ruoli, 2022. "Mitigating cascading failures of spatially embedded cyber–physical power systems by adding additional information links," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    13. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    14. Wu, Di & Ma, Feng & Javadi, Milad & Thulasiraman, Krishnaiya & Bompard, Ettore & Jiang, John N., 2017. "A study of the impacts of flow direction and electrical constraints on vulnerability assessment of power grid using electrical betweenness measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 295-309.
    15. Márcio das Chagas Moura & Helder Henrique Lima Diniz & Enrique López Droguett & Beatriz Sales da Cunha & Isis Didier Lins & Vicente Ribeiro Simoni, 2017. "Embedding resilience in the design of the electricity supply for industrial clients," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-33, November.
    16. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    17. Dávid Csercsik & László Á. Kóczy, 2017. "Efficiency and Stability in Electrical Power Transmission Networks: a Partition Function Form Approach," Networks and Spatial Economics, Springer, vol. 17(4), pages 1161-1184, December.
    18. Marek Stawowy & Adam Rosiński & Mirosław Siergiejczyk & Krzysztof Perlicki, 2021. "Quality and Reliability-Exploitation Modeling of Power Supply Systems," Energies, MDPI, vol. 14(9), pages 1-16, May.
    19. Collins, Seán & Deane, J.P. & Ó Gallachóir, Brian, 2017. "Adding value to EU energy policy analysis using a multi-model approach with an EU-28 electricity dispatch model," Energy, Elsevier, vol. 130(C), pages 433-447.
    20. Wang, Zhuoyang & Chen, Guo & Hill, David J. & Dong, Zhao Yang, 2016. "A power flow based model for the analysis of vulnerability in power networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 105-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2475-:d:1088337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.