IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2121-d1076665.html
   My bibliography  Save this article

Environmentally Friendly Diesel Fuel Obtained from Vegetable Raw Materials and Hydrocarbon Crude

Author

Listed:
  • Anzhelika M. Eremeeva

    (Geoecology Department, Saint Petersburg Mining University, 199106 Saint Petersburg, Russia)

  • Natalia K. Kondrasheva

    (Saint Petersburg Mining University, 199106 Saint Petersburg, Russia)

  • Artyom F. Khasanov

    (Chemical Technologies and Energy Processing Department, Saint Petersburg Mining University, 199106 Saint Petersburg, Russia)

  • Ivan L. Oleynik

    (Department for Publication Activities, Saint Petersburg Mining University, 199106 Saint Petersburg, Russia)

Abstract

Currently, the global issue for countries is the search for raw materials and the production of bioenergy within their country; bioenergy also includes biodiesel fuels. One of the most promising biodiesel fuels is the green diesel fuel produced by the hydrogenation of vegetable oils. Three methods have been proposed to obtain high-quality biodiesel and environmentally friendly diesel fuel: compounding green diesel with hydro-treated diesel fuel, compositions of the improved fuel «green diesel» with bio-additives, and two-component mixtures of environmentally friendly diesel fuel with bio-additives. Using these methods, it is possible to produce fuel for diesel engines with improved lubricating properties, the wear scar diameter is reduced to 232 microns, according to EN 590: 2009, this value standard is up to 460 microns. The optimal quantitative composition of three-component environmentally friendly diesel fuel with improved lubricity was established. The dependence of the change in the lubricating properties of environmentally friendly diesel fuel on the quantitative and qualitative composition are established. A mathematical equation describing the dependence of the change in the corrected wear spot on the amount of anti-wear additive in the green diesel fuel is derived. Three-component compositions of environmentally friendly diesel fuel make it possible to obtain fuel that meets the requirements of the EN 590: 2009 standard and to expand the resources for obtaining fuel, as well as to improve the environmental and operational characteristics of the fuel.

Suggested Citation

  • Anzhelika M. Eremeeva & Natalia K. Kondrasheva & Artyom F. Khasanov & Ivan L. Oleynik, 2023. "Environmentally Friendly Diesel Fuel Obtained from Vegetable Raw Materials and Hydrocarbon Crude," Energies, MDPI, vol. 16(5), pages 1-12, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2121-:d:1076665
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2121/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2121/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aghbashlo, Mortaza & Tabatabaei, Meisam & Khalife, Esmail & Roodbar Shojaei, Taha & Dadak, Ali, 2018. "Exergoeconomic analysis of a DI diesel engine fueled with diesel/biodiesel (B5) emulsions containing aqueous nano cerium oxide," Energy, Elsevier, vol. 149(C), pages 967-978.
    2. Cédric Decarpigny & Abdulhadi Aljawish & Cédric His & Bertrand Fertin & Muriel Bigan & Pascal Dhulster & Michel Millares & Rénato Froidevaux, 2022. "Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol," Energies, MDPI, vol. 15(9), pages 1-30, May.
    3. Jonas Matijošius & Olga Orynycz & Sergii Kovbasenko & Vitalii Simonenko & Yevheniy Shuba & Valentyn Moroz & Serhiy Gutarevych & Andrzej Wasiak & Karol Tucki, 2022. "Testing the Indicators of Diesel Vehicles Operating on Diesel Oil and Diesel Biofuel," Energies, MDPI, vol. 15(24), pages 1-10, December.
    4. Vladimir Litvinenko, 2020. "The Role of Hydrocarbons in the Global Energy Agenda: The Focus on Liquefied Natural Gas," Resources, MDPI, vol. 9(5), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jose Sabino & Denisson O. Liborio & Santiago Arias & Juan F. Gonzalez & Celmy M. B. M. Barbosa & Florival R. Carvalho & Roger Frety & Ivoneide C. L. Barros & Jose Geraldo A. Pacheco, 2023. "Hydrogen-Free Deoxygenation of Oleic Acid and Industrial Vegetable Oil Waste on CuNiAl Catalysts for Biofuel Production," Energies, MDPI, vol. 16(17), pages 1-20, August.
    2. Tatyana Kukharova & Alexander Martirosyan & Mir-Amal Asadulagi & Yury Ilyushin, 2024. "Development of the Separation Column’s Temperature Field Monitoring System," Energies, MDPI, vol. 17(20), pages 1-23, October.
    3. Yury Valeryevich Ilyushin & Ekaterina Ivanovna Kapostey, 2023. "Developing a Comprehensive Mathematical Model for Aluminium Production in a Soderberg Electrolyser," Energies, MDPI, vol. 16(17), pages 1-28, August.
    4. Anderson Breno Souza & Alvaro Antonio Villa Ochoa & José Ângelo Peixoto da Costa & Gustavo de Novaes Pires Leite & Héber Claudius Nunes Silva & Andrezza Carolina Carneiro Tómas & David Campos Barbosa , 2023. "A Review of Tropical Organic Materials for Biodiesel as a Substitute Energy Source in Internal Combustion Engines: A Viable Solution?," Energies, MDPI, vol. 16(9), pages 1-25, April.
    5. Asmat Ullah Khan & Lizhen Huang, 2023. "Toward Zero Emission Construction: A Comparative Life Cycle Impact Assessment of Diesel, Hybrid, and Electric Excavators," Energies, MDPI, vol. 16(16), pages 1-18, August.
    6. Gérson Daniel Valdez & Flávio Pinheiro Valois & Sammy Jonatan Bremer & Kelly Christina Alves Bezerra & Lauro Henrique Hamoy Guerreiro & Marcelo Costa Santos & Lucas Pinto Bernar & Waldeci Paraguassu F, 2023. "Improving the Bio-Oil Quality of Residual Biomass Pyrolysis by Chemical Activation: Effect of Alkalis and Acid Pre-Treatment," Energies, MDPI, vol. 16(7), pages 1-18, March.
    7. Sergey Sidorenko & Vyacheslav Trushnikov & Andrey Sidorenko, 2024. "Methane Emission Estimation Tools as a Basis for Sustainable Underground Mining of Gas-Bearing Coal Seams," Sustainability, MDPI, vol. 16(8), pages 1-22, April.
    8. Alexander García-Mariaca & Jorge Villalba & Uriel Carreño & Didier Aldana, 2023. "Performance and Emissions of a CI-ICE Fuelled with Jatropha Biodiesel Blends and Economic and Environment Assessment for Power Generation in Non-Interconnected Areas," Energies, MDPI, vol. 16(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gurunathan Manikandan & P. Rajesh Kanna & Dawid Taler & Tomasz Sobota, 2023. "Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective," Energies, MDPI, vol. 16(4), pages 1-17, February.
    2. Gad, M.S. & Uysal, Cuneyt & El-Shafay, A.S. & Ağbulut, Ümit, 2024. "Exergetic and exergoeconomic assessments of a diesel engine fuelled with waste chicken fat biodiesel-diesel blends," Energy, Elsevier, vol. 293(C).
    3. Reyes García-Contreras & Andrés Agudelo & Arántzazu Gómez & Pablo Fernández-Yáñez & Octavio Armas & Ángel Ramos, 2019. "Thermoelectric Energy Recovery in a Light-Duty Diesel Vehicle under Real-World Driving Conditions at Different Altitudes with Diesel, Biodiesel and GTL Fuels," Energies, MDPI, vol. 12(6), pages 1-18, March.
    4. Asmat Ullah Khan & Lizhen Huang, 2023. "Toward Zero Emission Construction: A Comparative Life Cycle Impact Assessment of Diesel, Hybrid, and Electric Excavators," Energies, MDPI, vol. 16(16), pages 1-18, August.
    5. Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Sulaiman, Alawi & Goli, Sayed Amir Hossein & Tavassoli-Kafrani, Elham & Ghaffari, Akram & Rajaeifar, Mohammad Ali & Kim, Ki-Hyun, 2020. "Unlocking the potential of walnut husk extract in the production of waste cooking oil-based biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Kivevele, Thomas & Kichonge, Baraka, 2024. "Techno-economic evaluation of transesterification processes for biodiesel production from low quality non-edible feedstocks: Process design and simulation," Energy, Elsevier, vol. 297(C).
    8. Arkadiusz Małek & Jacek Caban & Agnieszka Dudziak & Andrzej Marciniak & Piotr Ignaciuk, 2023. "A Method of Assessing the Selection of Carport Power for an Electric Vehicle Using the Metalog Probability Distribution Family," Energies, MDPI, vol. 16(13), pages 1-16, June.
    9. Aghbashlo, Mortaza & Tabatabaei, Meisam & Amid, Sama & Hosseinzadeh-Bandbafha, Homa & Khoshnevisan, Benyamin & Kianian, Ghaem, 2020. "Life cycle assessment analysis of an ultrasound-assisted system converting waste cooking oil into biodiesel," Renewable Energy, Elsevier, vol. 151(C), pages 1352-1364.
    10. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    11. Dadak, Ali & Mousavi, Seyed Ali & Mehrpooya, Mehdi & Kasaeian, Alibakhsh, 2022. "Techno-economic investigation and dual-objective optimization of a stand-alone combined configuration for the generation and storage of electricity and hydrogen applying hybrid renewable system," Renewable Energy, Elsevier, vol. 201(P1), pages 1-20.
    12. Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Kalogirou, Soteris A. & Gupta, Vijai Kumar & Park, Young-Kwon & Fallahi, Alireza & Sulaiman, Alawi & Ranjbari, Meisam & Rahnama, Hassan & Aghbashl, 2022. "Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Rajaeifar, Mohammad Ali & Tabatabaei, Meisam & Aghbashlo, Mortaza & Nizami, Abdul-Sattar & Heidrich, Oliver, 2019. "Emissions from urban bus fleets running on biodiesel blends under real-world operating conditions: Implications for designing future case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 276-292.
    14. Edmundas Kazimieras Zavadskas & Audrius Čereška & Jonas Matijošius & Alfredas Rimkus & Romualdas Bausys, 2019. "Internal Combustion Engine Analysis of Energy Ecological Parameters by Neutrosophic MULTIMOORA and SWARA Methods," Energies, MDPI, vol. 12(8), pages 1-26, April.
    15. Fallahi, Alireza & Farzad, Somayeh & Mohtasebi, Seyed Saeid & Mandegari, Mohsen & Görgens, Johann F. & Gupta, Vijai Kumar & Lam, Su Shiung & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2021. "Sustainability assessment of sugarcane residues valorization to biobutadiene by exergy and exergoeconomic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    16. Liu, Yang & Han, Jitian & You, Huailiang, 2020. "Exergoeconomic analysis and multi-objective optimization of a CCHP system based on LNG cold energy utilization and flue gas waste heat recovery with CO2 capture," Energy, Elsevier, vol. 190(C).
    17. Pablo Fernández-Arias & Diego Vergara & Álvaro Antón-Sancho, 2023. "Bibliometric Review and Technical Summary of PWR Small Modular Reactors," Energies, MDPI, vol. 16(13), pages 1-15, July.
    18. Mengyang Fan & Rui Kai Miao & Pengfei Ou & Yi Xu & Zih-Yi Lin & Tsung-Ju Lee & Sung-Fu Hung & Ke Xie & Jianan Erick Huang & Weiyan Ni & Jun Li & Yong Zhao & Adnan Ozden & Colin P. O’Brien & Yuanjun Ch, 2023. "Single-site decorated copper enables energy- and carbon-efficient CO2 methanation in acidic conditions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Doğan, Battal & Çelik, Mehmet & Bayındırlı, Cihan & Erol, Derviş, 2023. "Exergy, exergoeconomic, and sustainability analyses of a diesel engine using biodiesel fuel blends containing nanoparticles," Energy, Elsevier, vol. 274(C).
    20. Hoang, Anh Tuan & Tabatabaei, Meisam & Aghbashlo, Mortaza & Carlucci, Antonio Paolo & Ölçer, Aykut I. & Le, Anh Tuan & Ghassemi, Abbas, 2021. "Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2121-:d:1076665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.