IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p2076-d1074866.html
   My bibliography  Save this article

Electric Vehicle Charging Hub Power Forecasting: A Statistical and Machine Learning Based Approach

Author

Listed:
  • Francesco Lo Franco

    (Department of Electrical, Electronic and Information Engineering, University of Bologna, 40136 Bologna, Italy)

  • Mattia Ricco

    (Department of Electrical, Electronic and Information Engineering, University of Bologna, 40136 Bologna, Italy)

  • Vincenzo Cirimele

    (Department of Electrical, Electronic and Information Engineering, University of Bologna, 40136 Bologna, Italy)

  • Valerio Apicella

    (R&D and Innovation Group, Movyon s.p.a., 50013 Florence, Italy)

  • Benedetto Carambia

    (R&D and Innovation Group, Movyon s.p.a., 50013 Florence, Italy)

  • Gabriele Grandi

    (Department of Electrical, Electronic and Information Engineering, University of Bologna, 40136 Bologna, Italy)

Abstract

Electric vehicles (EVs) penetration growth is essential to reduce transportation-related local pollutants. Most countries are witnessing a rapid development of the necessary charging infrastructure and a consequent increase in EV energy demand. In this context, power demand forecasting is an essential tool for planning and integrating EV charging as much as possible with the electric grid, renewable sources, storage systems, and their management systems. However, this forecasting is still challenging due to several reasons: the still not statistically significant number of circulating EVs, the different users’ behavior based on the car parking scenario, the strong heterogeneity of both charging infrastructure and EV population, and the uncertainty about the initial state of charge (SOC) distribution at the beginning of the charge. This paper aims to provide a forecasting method that considers all the main factors that may affect each charging event. The users’ behavior in different urban scenarios is predicted through their statistical pattern. A similar approach is used to forecast the EV’s initial SOC. A machine learning approach is adopted to develop a battery-charging behavioral model that takes into account the different EV model charging profiles. The final algorithm combines the different approaches providing a forecasting of the power absorbed by each single charging session and the total power absorbed by charging hubs. The algorithm is applied to different parking scenarios and the results highlight the strong difference in power demand among the different analyzed cases.

Suggested Citation

  • Francesco Lo Franco & Mattia Ricco & Vincenzo Cirimele & Valerio Apicella & Benedetto Carambia & Gabriele Grandi, 2023. "Electric Vehicle Charging Hub Power Forecasting: A Statistical and Machine Learning Based Approach," Energies, MDPI, vol. 16(4), pages 1-27, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2076-:d:1074866
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/2076/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/2076/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhiyuan Zhuang & Xidong Zheng & Zixing Chen & Tao Jin & Zengqin Li, 2022. "Load Forecast of Electric Vehicle Charging Station Considering Multi-Source Information and User Decision Modification," Energies, MDPI, vol. 15(19), pages 1-13, September.
    2. Benjamin Schaden & Thomas Jatschka & Steffen Limmer & Günther Robert Raidl, 2021. "Smart Charging of Electric Vehicles Considering SOC-Dependent Maximum Charging Powers," Energies, MDPI, vol. 14(22), pages 1-33, November.
    3. Ahmad Almaghrebi & Fares Aljuheshi & Mostafa Rafaie & Kevin James & Mahmoud Alahmad, 2020. "Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods," Energies, MDPI, vol. 13(16), pages 1-21, August.
    4. Francesco Lo Franco & Mattia Ricco & Riccardo Mandrioli & Gabriele Grandi, 2020. "Electric Vehicle Aggregate Power Flow Prediction and Smart Charging System for Distributed Renewable Energy Self-Consumption Optimization," Energies, MDPI, vol. 13(19), pages 1-25, September.
    5. Dan Zhou & Zhonghao Guo & Yuzhe Xie & Yuheng Hu & Da Jiang & Yibin Feng & Dong Liu, 2022. "Using Bayesian Deep Learning for Electric Vehicle Charging Station Load Forecasting," Energies, MDPI, vol. 15(17), pages 1-15, August.
    6. Andrenacci, N. & Ragona, R. & Valenti, G., 2016. "A demand-side approach to the optimal deployment of electric vehicle charging stations in metropolitan areas," Applied Energy, Elsevier, vol. 182(C), pages 39-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Carmela Di Piazza, 2024. "Volume II: Energy Management Systems for Optimal Operation of Electrical Micro/Nanogrids," Energies, MDPI, vol. 17(8), pages 1-3, April.
    2. Saeed Alyami, 2024. "Ensuring Sustainable Grid Stability through Effective EV Charging Management: A Time and Energy-Based Approach," Sustainability, MDPI, vol. 16(14), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Lo Franco & Vincenzo Cirimele & Mattia Ricco & Vitor Monteiro & Joao L. Afonso & Gabriele Grandi, 2022. "Smart Charging for Electric Car-Sharing Fleets Based on Charging Duration Forecasting and Planning," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    2. Philipp A. Friese & Wibke Michalk & Markus Fischer & Cornelius Hardt & Klaus Bogenberger, 2021. "Charging Point Usage in Germany—Automated Retrieval, Analysis, and Usage Types Explained," Sustainability, MDPI, vol. 13(23), pages 1-26, November.
    3. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    4. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    5. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    6. Pichamon Keawthong & Veera Muangsin & Chupun Gowanit, 2022. "Location Selection of Charging Stations for Electric Taxis: A Bangkok Case," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    7. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    8. Shuping Wu & Zan Yang, 2020. "Availability of Public Electric Vehicle Charging Pile and Development of Electric Vehicle: Evidence from China," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    9. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    10. Wang, Yue & Shi, Jianmai & Wang, Rui & Liu, Zhong & Wang, Ling, 2018. "Siting and sizing of fast charging stations in highway network with budget constraint," Applied Energy, Elsevier, vol. 228(C), pages 1255-1271.
    11. Rafał Różycki & Joanna Józefowska & Krzysztof Kurowski & Tomasz Lemański & Tomasz Pecyna & Marek Subocz & Grzegorz Waligóra, 2022. "A Quantum Approach to the Problem of Charging Electric Cars on a Motorway," Energies, MDPI, vol. 16(1), pages 1-20, December.
    12. Zhi Wu & Yuxuan Zhuang & Suyang Zhou & Shuning Xu & Peng Yu & Jinqiao Du & Xiner Luo & Ghulam Abbas, 2020. "Bi-Level Planning of Multi-Functional Vehicle Charging Stations Considering Land Use Types," Energies, MDPI, vol. 13(5), pages 1-17, March.
    13. Jaikumar Shanmuganathan & Aruldoss Albert Victoire & Gobu Balraj & Amalraj Victoire, 2022. "Deep Learning LSTM Recurrent Neural Network Model for Prediction of Electric Vehicle Charging Demand," Sustainability, MDPI, vol. 14(16), pages 1-28, August.
    14. Jianxin Qin & Jing Qiu & Yating Chen & Tao Wu & Longgang Xiang, 2022. "Charging Stations Selection Using a Graph Convolutional Network from Geographic Grid," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    15. Adrian Ostermann & Yann Fabel & Kim Ouan & Hyein Koo, 2022. "Forecasting Charging Point Occupancy Using Supervised Learning Algorithms," Energies, MDPI, vol. 15(9), pages 1-23, May.
    16. Yue Wang & Zhong Liu & Jianmai Shi & Guohua Wu & Rui Wang, 2018. "Joint Optimal Policy for Subsidy on Electric Vehicles and Infrastructure Construction in Highway Network," Energies, MDPI, vol. 11(9), pages 1-21, September.
    17. Jingnan Zhang & Shichun Xu & Zhengxia He & Chengze Li & Xiaona Meng, 2022. "Factors Influencing Adoption Intention for Electric Vehicles under a Subsidy Deduction: From Different City-Level Perspectives," Sustainability, MDPI, vol. 14(10), pages 1-24, May.
    18. VJ Vijayalakshmi & A Amudha & K Dhayalini & A Prakash, 2024. "A hybrid WFS-CGO based approach for optimal allocation of EV charging spots along with capacitors in smart distribution network for congestion management," Energy & Environment, , vol. 35(4), pages 1673-1702, June.
    19. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    20. Ch. S. V. Prasad Rao & A. Pandian & Ch. Rami Reddy & A. Giri Prasad & Ahmad Alahmadi & Yasser Alharbi, 2022. "A Hybrid AOSAOA Scheme Based on the Optimal Location for Electric Vehicle Parking Lots and Capacitors in a Grid to Care of Voltage Profile and Power Loss," Energies, MDPI, vol. 15(12), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2076-:d:1074866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.