IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p442-d1020482.html
   My bibliography  Save this article

A Quantum Approach to the Problem of Charging Electric Cars on a Motorway

Author

Listed:
  • Rafał Różycki

    (Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland)

  • Joanna Józefowska

    (Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland)

  • Krzysztof Kurowski

    (Poznan Supercomputing and Networking Center, Institute of Bioorganic Chemistry of the Polish Academy of Sciences, 61-139 Poznan, Poland)

  • Tomasz Lemański

    (Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland)

  • Tomasz Pecyna

    (Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland)

  • Marek Subocz

    (Poznan Supercomputing and Networking Center, Institute of Bioorganic Chemistry of the Polish Academy of Sciences, 61-139 Poznan, Poland)

  • Grzegorz Waligóra

    (Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland)

Abstract

In this paper, the problem of charging electric motor vehicles on a motorway is considered. Charging points are located alongside the motorway. It is assumed that there are a number of vehicles on a given section of a motorway. In the motorway, there are several nodes, and for each vehicle, the entering and the leaving nodes are known, as well as the time of entrance. For each vehicle, we know the total capacity of its battery, and the current amount of energy in the battery when entering the motorway. It is also assumed that for each vehicle, there is a finite set of speeds it can use when traveling the motorway. The speed is chosen when entering the motorway, and cannot be changed before reaching the charging station. For each speed, there is given a corresponding power usage; the higher the speed, the larger the power usage. Each vehicle can only use one charger, and when its battery is full, the amount of energy is sufficient for reaching the outgoing node. We look for a feasible solution to the problem, i.e., a solution in which no vehicle has to wait for a charger. The problem is formulated as a problem of scheduling independent, nonpreemptable jobs in parallel, unrelated machines under an additional doubly constrained resource, which is power. Quantum approaches to solve the defined problem are proposed. They use the quantum approximate optimization algorithm and the quantum annealing technique. A computational experiment is presented and discussed. Some conclusions and directions for future research are given.

Suggested Citation

  • Rafał Różycki & Joanna Józefowska & Krzysztof Kurowski & Tomasz Lemański & Tomasz Pecyna & Marek Subocz & Grzegorz Waligóra, 2022. "A Quantum Approach to the Problem of Charging Electric Cars on a Motorway," Energies, MDPI, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:442-:d:1020482
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/442/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/442/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benjamin Schaden & Thomas Jatschka & Steffen Limmer & Günther Robert Raidl, 2021. "Smart Charging of Electric Vehicles Considering SOC-Dependent Maximum Charging Powers," Energies, MDPI, vol. 14(22), pages 1-33, November.
    2. Ajagekar, Akshay & You, Fengqi, 2019. "Quantum computing for energy systems optimization: Challenges and opportunities," Energy, Elsevier, vol. 179(C), pages 76-89.
    3. Wager, Guido & Whale, Jonathan & Braunl, Thomas, 2016. "Driving electric vehicles at highway speeds: The effect of higher driving speeds on energy consumption and driving range for electric vehicles in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 158-165.
    4. Ali Kordmostafapour & Javad Rezaeian & Iraj Mahdavi & Mahdi Yar Farjad, 2022. "Scheduling unrelated parallel machine problem with multi-mode processing times and batch delivery cost," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1438-1470, December.
    5. Mikołaj Schmidt & Paweł Zmuda-Trzebiatowski & Marcin Kiciński & Piotr Sawicki & Konrad Lasak, 2021. "Multiple-Criteria-Based Electric Vehicle Charging Infrastructure Design Problem," Energies, MDPI, vol. 14(11), pages 1-34, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Lo Franco & Vincenzo Cirimele & Mattia Ricco & Vitor Monteiro & Joao L. Afonso & Gabriele Grandi, 2022. "Smart Charging for Electric Car-Sharing Fleets Based on Charging Duration Forecasting and Planning," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    2. Wojciech Rabiega & Artur Gorzałczyński & Robert Jeszke & Paweł Mzyk & Krystian Szczepański, 2021. "How Long Will Combustion Vehicles Be Used? Polish Transport Sector on the Pathway to Climate Neutrality," Energies, MDPI, vol. 14(23), pages 1-19, November.
    3. Yuan, Xinmei & Zhang, Chuanpu & Hong, Guokai & Huang, Xueqi & Li, Lili, 2017. "Method for evaluating the real-world driving energy consumptions of electric vehicles," Energy, Elsevier, vol. 141(C), pages 1955-1968.
    4. Tiberiu Stefan Letia & Elenita Maria Durla-Pasca & Dahlia Al-Janabi & Octavian Petru Cuibus, 2022. "Development of Evolutionary Systems Based on Quantum Petri Nets," Mathematics, MDPI, vol. 10(23), pages 1-34, November.
    5. Auer, Judith & Link, Steffen & Plötz, Patrick, 2023. "Public charging locations for battery electric trucks: A GIS-based statistical analysis using real-world truck stop data for Germany," Working Papers "Sustainability and Innovation" S04/2023, Fraunhofer Institute for Systems and Innovation Research (ISI).
    6. Klemeš, Jiří Jaromír & Wang, Qiu-Wang & Varbanov, Petar Sabev & Zeng, Min & Chin, Hon Huin & Lal, Nathan Sanjay & Li, Nian-Qi & Wang, Bohong & Wang, Xue-Chao & Walmsley, Timothy Gordon, 2020. "Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    7. Ajagekar, Akshay & You, Fengqi, 2024. "Variational quantum circuit based demand response in buildings leveraging a hybrid quantum-classical strategy," Applied Energy, Elsevier, vol. 364(C).
    8. Wen, Jianping & Zhao, Dan & Zhang, Chuanwei, 2020. "An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 1629-1648.
    9. Ahmed Al-Shafei & Hamidreza Zareipour & Yankai Cao, 2022. "High-Performance and Parallel Computing Techniques Review: Applications, Challenges and Potentials to Support Net-Zero Transition of Future Grids," Energies, MDPI, vol. 15(22), pages 1-58, November.
    10. Bi, Jun & Wang, Yongxing & Sai, Qiuyue & Ding, Cong, 2019. "Estimating remaining driving range of battery electric vehicles based on real-world data: A case study of Beijing, China," Energy, Elsevier, vol. 169(C), pages 833-843.
    11. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng, 2020. "Energy consumption analysis and prediction of electric vehicles based on real-world driving data," Applied Energy, Elsevier, vol. 275(C).
    12. Haber, Marc & Azaïs, Philippe & Genies, Sylvie & Raccurt, Olivier, 2023. "Stress factor identification and Risk Probabilistic Number (RPN) analysis of Li-ion batteries based on worldwide electric vehicle usage," Applied Energy, Elsevier, vol. 343(C).
    13. Gönül, Ömer & Duman, A. Can & Güler, Önder, 2021. "Electric vehicles and charging infrastructure in Turkey: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    14. Mohamed Amr Sultan & Tomaž Kramberger & Mahmoud Barakat & Ahmed Hussein Ali, 2023. "Barriers to Applying Last-Mile Logistics in the Egyptian Market: An Extension of the Technology Acceptance Model," Sustainability, MDPI, vol. 15(17), pages 1-25, August.
    15. Kłos, Marcin Jacek & Sierpiński, Grzegorz, 2023. "Siting of electric vehicle charging stations method addressing area potential and increasing their accessibility," Journal of Transport Geography, Elsevier, vol. 109(C).
    16. Steffen Limmer & Johannes Varga & Günther Robert Raidl, 2023. "Large Neighborhood Search for Electric Vehicle Fleet Scheduling," Energies, MDPI, vol. 16(12), pages 1-14, June.
    17. Lee, Gwangryeol & Song, Jingeun & Han, Jungwon & Lim, Yunsung & Park, Suhan, 2023. "Study on energy consumption characteristics of passenger electric vehicle according to the regenerative braking stages during real-world driving conditions," Energy, Elsevier, vol. 283(C).
    18. Lyu, Wenjing & Liu, Jin, 2021. "Artificial Intelligence and emerging digital technologies in the energy sector," Applied Energy, Elsevier, vol. 303(C).
    19. Masiero, Gilmar & Ogasavara, Mario Henrique & Jussani, Ailton Conde & Risso, Marcelo Luiz, 2017. "The global value chain of electric vehicles: A review of the Japanese, South Korean and Brazilian cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 290-296.
    20. Roberto Ruggieri & Marco Ruggeri & Giuliana Vinci & Stefano Poponi, 2021. "Electric Mobility in a Smart City: European Overview," Energies, MDPI, vol. 14(2), pages 1-29, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:442-:d:1020482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.