IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p2003-d1072106.html
   My bibliography  Save this article

Development and Validation of Control Algorithm for Variable Speed Fixed Pitch Small Wind Turbine

Author

Listed:
  • Donggeun Jeong

    (Department of Integrated Energy and Infra System, Kangwon National University, Engineering Building 6-319, 1 Gangwondaehak-gil, Chuncheon 24341, Gangwon, Republic of Korea)

  • Taesu Jeon

    (Department of Integrated Energy and Infra System, Kangwon National University, Engineering Building 6-319, 1 Gangwondaehak-gil, Chuncheon 24341, Gangwon, Republic of Korea)

  • Insu Paek

    (Department of Mechatronics Engineering, Kangwon National University, Engineering Building 6-319, 1 Gangwondaehak-gil, Chuncheon 24341, Gangwon, Republic of Korea)

  • Deokjin Lim

    (Geum Poong Inc., Seobusanupdo-ro, Jeongeup 56183, Jeollabuk, Republic of Korea)

Abstract

In this study, a power control algorithm of a variable-speed fixed-pitch horizontal-axis lift-type 20 kW small wind turbine (SWT) was proposed and verified through dynamic simulations. The power control algorithm proposed in this study consists of algorithms for Region II to track the maximum power coefficient, for Region II-1/2 to maintain the rated rotor speed, and for Region III to maintain the rated power. To verify the proposed power control algorithm, simulations were performed at the rated wind speed and above the rated wind speed, to which turbulence intensity based on the IEC regulation’s normal turbulence model was applied. As a result, it was confirmed that the proposed controller operates properly in the whole three regions including Regions II, II-1/2, and III. The controller performance was then compared with the variable-speed variable-pitch power controller. Although the performance of the proposed controller was considered good for the target VSVP wind turbine, it was lower than that of the conventional controller applied to the same wind turbine. Compared to the VSVP wind turbine, the VSFP wind turbine with the proposed controller was found to have higher mean loads on the blade and the tower but the fatigue loads in terms of Damage Equivalent Load (DEL) were found to be reduced.

Suggested Citation

  • Donggeun Jeong & Taesu Jeon & Insu Paek & Deokjin Lim, 2023. "Development and Validation of Control Algorithm for Variable Speed Fixed Pitch Small Wind Turbine," Energies, MDPI, vol. 16(4), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2003-:d:1072106
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/2003/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/2003/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyeonmu Jang & Insu Paek & Seungjoo Kim & Deockjin Jeong, 2019. "Performance Prediction and Validation of a Small-Capacity Twisted Savonius Wind Turbine," Energies, MDPI, vol. 12(9), pages 1-12, May.
    2. Taesu Jeon & Insu Paek, 2021. "Design and Verification of the LQR Controller Based on Fuzzy Logic for Large Wind Turbine," Energies, MDPI, vol. 14(1), pages 1-17, January.
    3. Simic, Zdenko & Havelka, Juraj George & Bozicevic Vrhovcak, Maja, 2013. "Small wind turbines – A unique segment of the wind power market," Renewable Energy, Elsevier, vol. 50(C), pages 1027-1036.
    4. Hyeonmu Jang & Dongmyeong Kim & Yechan Hwang & Insu Paek & Seungjoo Kim & Joonho Baek, 2019. "Analysis of Archimedes Spiral Wind Turbine Performance by Simulation and Field Test," Energies, MDPI, vol. 12(24), pages 1-11, December.
    5. Singh, Ronit K. & Ahmed, M. Rafiuddin & Zullah, Mohammad Asid & Lee, Young-Ho, 2012. "Design of a low Reynolds number airfoil for small horizontal axis wind turbines," Renewable Energy, Elsevier, vol. 42(C), pages 66-76.
    6. Taesu Jeon & Dongmyoung Kim & Insu Paek, 2022. "Improvements to and Experimental Validation of PI Controllers Using a Reference Bias Control Algorithm for Wind Turbines," Energies, MDPI, vol. 15(21), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alina Fazylova & Baurzhan Tultayev & Teodor Iliev & Ivaylo Stoyanov & Ivan Beloev, 2023. "Development of a Control Unit for the Angle of Attack of a Vertically Axial Wind Turbine," Energies, MDPI, vol. 16(13), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zahra Sefidgar & Amir Ahmadi Joneidi & Ahmad Arabkoohsar, 2023. "A Comprehensive Review on Development and Applications of Cross-Flow Wind Turbines," Sustainability, MDPI, vol. 15(5), pages 1-39, March.
    2. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    3. Rocha, P.A. Costa & Carneiro de Araujo, J.W. & Lima, R.J. Pontes & Vieira da Silva, M.E. & Albiero, D. & de Andrade, C.F. & Carneiro, F.O.M., 2018. "The effects of blade pitch angle on the performance of small-scale wind turbine in urban environments," Energy, Elsevier, vol. 148(C), pages 169-178.
    4. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    5. Tania García-Sánchez & Arbinda Kumar Mishra & Elías Hurtado-Pérez & Rubén Puché-Panadero & Ana Fernández-Guillamón, 2020. "A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine," Energies, MDPI, vol. 13(21), pages 1-16, November.
    6. Erkan, Onur & Özkan, Musa & Karakoç, T. Hikmet & Garrett, Stephen J. & Thomas, Peter J., 2020. "Investigation of aerodynamic performance characteristics of a wind-turbine-blade profile using the finite-volume method," Renewable Energy, Elsevier, vol. 161(C), pages 1359-1367.
    7. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    8. Carré, Aurélien & Gasnier, Pierre & Roux, Émile & Tabourot, Laurent, 2022. "Extending the operating limits and performances of centimetre-scale wind turbines through biomimicry," Applied Energy, Elsevier, vol. 326(C).
    9. Taesu Jeon & Dongmyoung Kim & Insu Paek, 2022. "Improvements to and Experimental Validation of PI Controllers Using a Reference Bias Control Algorithm for Wind Turbines," Energies, MDPI, vol. 15(21), pages 1-18, November.
    10. Wolf-Gerrit Früh, 2023. "Assessing the Performance of Small Wind Energy Systems Using Regional Weather Data," Energies, MDPI, vol. 16(8), pages 1-21, April.
    11. Refaie, Abdelaziz G. & Abdel Hameed, H.S. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2021. "Qualitative and quantitative assessments of an Archimedes Spiral Wind Turbine performance augmented by A concentrator," Energy, Elsevier, vol. 231(C).
    12. Luke Sakamoto & Tomohiro Fukui & Koji Morinishi, 2022. "Blade Dimension Optimization and Performance Analysis of the 2-D Ugrinsky Wind Turbine," Energies, MDPI, vol. 15(7), pages 1-14, March.
    13. Ke Song & Huiting Huan & Yuchi Kang, 2022. "Aerodynamic Performance and Wake Characteristics Analysis of Archimedes Spiral Wind Turbine Rotors with Different Blade Angle," Energies, MDPI, vol. 16(1), pages 1-18, December.
    14. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    15. Abdel Hameed, Hossam S. & Hashem, Islam & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2023. "Shape optimization of a shrouded Archimedean-spiral type wind turbine for small-scale applications," Energy, Elsevier, vol. 263(PB).
    16. Akhter, Md Zishan & Ali, Ahmed Riyadh & Jawahar, Hasan Kamliya & Omar, Farag Khalifa & Elnajjar, Emad, 2023. "Performance enhancement of small-scale wind turbine featuring morphing blades," Energy, Elsevier, vol. 278(C).
    17. Hyeonmu Jang & Dongmyeong Kim & Yechan Hwang & Insu Paek & Seungjoo Kim & Joonho Baek, 2019. "Analysis of Archimedes Spiral Wind Turbine Performance by Simulation and Field Test," Energies, MDPI, vol. 12(24), pages 1-11, December.
    18. Xie, Wei & Zeng, Pan & Lei, Liping, 2015. "Wind tunnel experiments for innovative pitch regulated blade of horizontal axis wind turbine," Energy, Elsevier, vol. 91(C), pages 1070-1080.
    19. Olatayo, Kunle Ibukun & Wichers, J. Harry & Stoker, Piet W., 2018. "Energy and economic performance of small wind energy systems under different climatic conditions of South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 376-392.
    20. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2003-:d:1072106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.