Influence of Copper Foam on the Thermal Characteristics of Phase Change Materials
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Morena Falcone & Danish Rehman & Matteo Dongellini & Claudia Naldi & Beatrice Pulvirenti & Gian Luca Morini, 2022. "Experimental Investigation on Latent Thermal Energy Storages (LTESs) Based on Pure and Copper-Foam-Loaded PCMs," Energies, MDPI, vol. 15(13), pages 1-13, July.
- Xiao, X. & Zhang, P. & Li, M., 2013. "Preparation and thermal characterization of paraffin/metal foam composite phase change material," Applied Energy, Elsevier, vol. 112(C), pages 1357-1366.
- Yang, Xiaohu & Bai, Qingsong & Guo, Zengxu & Niu, Zhaoyang & Yang, Chun & Jin, Liwen & Lu, Tian Jian & Yan, Jinyue, 2018. "Comparison of direct numerical simulation with volume-averaged method on composite phase change materials for thermal energy storage," Applied Energy, Elsevier, vol. 229(C), pages 700-714.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
- Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Jana Shafi & Mikhail Sheremet & Mehdi Fteiti & Abdulkafi Mohammed Saeed & Mohammad Ghalambaz, 2023. "Computational Study of Phase Change Heat Transfer and Latent Heat Energy Storage for Thermal Management of Electronic Components Using Neural Networks," Mathematics, MDPI, vol. 11(2), pages 1-20, January.
- Yao, Haichen & Liu, Xianglei & Luo, Qingyang & Xu, Qiao & Tian, Yang & Ren, Tianze & Zheng, Hangbin & Gao, Ke & Dang, Chunzhuo & Xuan, Yimin & Liu, Zhan & Yang, Xiaohu & Ding, Yulong, 2022. "Experimental and numerical investigations of solar charging performances of 3D porous skeleton based latent heat storage devices," Applied Energy, Elsevier, vol. 320(C).
- Yang, Xiaohu & Guo, Zengxu & Liu, Yanhua & Jin, Liwen & He, Ya-Ling, 2019. "Effect of inclination on the thermal response of composite phase change materials for thermal energy storage," Applied Energy, Elsevier, vol. 238(C), pages 22-33.
- Nassima Radouane, 2022. "A Comprehensive Review of Composite Phase Change Materials (cPCMs) for Thermal Management Applications, Including Manufacturing Processes, Performance, and Applications," Energies, MDPI, vol. 15(21), pages 1-28, November.
- Xu, Yang & Ren, Qinlong & Zheng, Zhang-Jing & He, Ya-Ling, 2017. "Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media," Applied Energy, Elsevier, vol. 193(C), pages 84-95.
- Hamedi, M.R. & Doustdar, O. & Tsolakis, A. & Hartland, J., 2019. "Thermal energy storage system for efficient diesel exhaust aftertreatment at low temperatures," Applied Energy, Elsevier, vol. 235(C), pages 874-887.
- Qian, Tingting & Li, Jinhong & Min, Xin & Deng, Yong & Guan, Weimin & Ma, Hongwen, 2015. "Polyethylene glycol/mesoporous calcium silicate shape-stabilized composite phase change material: Preparation, characterization, and adjustable thermal property," Energy, Elsevier, vol. 82(C), pages 333-340.
- Xu, Biwan & Ma, Hongyan & Lu, Zeyu & Li, Zongjin, 2015. "Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites," Applied Energy, Elsevier, vol. 160(C), pages 358-367.
- Zhu, Xiao & Han, Liang & Lu, Yunfeng & Wei, Fei & Jia, Xilai, 2019. "Geometry-induced thermal storage enhancement of shape-stabilized phase change materials based on oriented carbon nanotubes," Applied Energy, Elsevier, vol. 254(C).
- Grzegorz Czerwiński & Jerzy Wołoszyn, 2022. "Influence of the Longitudinal and Tree-Shaped Fin Parameters on the Shell-and-Tube LHTES Energy Efficiency," Energies, MDPI, vol. 16(1), pages 1-24, December.
- Zhang, Long & Zhou, Kechao & Wei, Quiping & Ma, Li & Ye, Wentao & Li, Haichao & Zhou, Bo & Yu, Zhiming & Lin, Cheng-Te & Luo, Jingting & Gan, Xueping, 2019. "Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage," Applied Energy, Elsevier, vol. 233, pages 208-219.
- Ali M. Sefidan & Mehdi E. Sangari & Mathieu Sellier & Md. Imran Hossen Khan & Suvash C. Saha, 2022. "Modeling of Multi-Layer Phase Change Material in a Triplex Tube under Various Thermal Boundary Conditions," Energies, MDPI, vol. 15(9), pages 1-14, May.
- Mohamed Houcine Dhaou & Sofiene Mellouli & Faisal Alresheedi & Yassine El-Ghoul, 2021. "Numerical Assessment of an Innovative Design of an Evacuated Tube Solar Collector Incorporated with PCM Embedded Metal Foam/Plate Fins," Sustainability, MDPI, vol. 13(19), pages 1-11, September.
- Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
- Sardari, Pouyan Talebizadeh & Mohammed, Hayder I. & Giddings, Donald & walker, Gavin S. & Gillott, Mark & Grant, David, 2019. "Numerical study of a multiple-segment metal foam-PCM latent heat storage unit: Effect of porosity, pore density and location of heat source," Energy, Elsevier, vol. 189(C).
- Nomura, Takahiro & Zhu, Chunyu & Nan, Sheng & Tabuchi, Kazuki & Wang, Shuangfeng & Akiyama, Tomohiro, 2016. "High thermal conductivity phase change composite with a metal-stabilized carbon-fiber network," Applied Energy, Elsevier, vol. 179(C), pages 1-6.
- Murali, G. & Sravya, G.S.N. & Jaya, J. & Naga Vamsi, V., 2021. "A review on hybrid thermal management of battery packs and it's cooling performance by enhanced PCM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
More about this item
Keywords
phase change materials; copper foam; Rayleigh numbers; metal foam partially filled; enhanced heat transfer;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1994-:d:1071818. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.