IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1878-d1067820.html
   My bibliography  Save this article

Influence of Axial Installation Deviation on the Hydraulic Axial Force of the 1000 MW Francis Runner in the Rated Operating Condition

Author

Listed:
  • Yongsheng Liu

    (Sinohydro Engineering Bureau 4 Co., Ltd., Chengdu 610031, China)

  • Chengming Liu

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China)

  • Yongsheng Zhang

    (Sinohydro Engineering Bureau 4 Co., Ltd., Chengdu 610031, China)

  • Xingxing Huang

    (S.C.I. Energy, Future Energy Research Institute, Seidengasse 17, 8706 Zurich, Switzerland)

  • Tao Guo

    (Sinohydro Engineering Bureau 4 Co., Ltd., Chengdu 610031, China)

  • Lingjiu Zhou

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China)

  • Zhengwei Wang

    (State Key Laboratory of Hydroscience and Engineering, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

Abstract

To study the influence of the axial installation deviation of the runner on the hydraulic axial force of the 1000 MW Francis turbine unit, geometric models of the full flow passage of the Francis turbine with the runner sinking in the axial direction by 0, 0.5, 1, 1.5, 2.5, 4, and 5.5 mm were established. The geometric models of the upper crown clearance, lower band clearance, and pressure balance pipes were also built. The SST turbulence model was used in the CFD setup to numerically simulate the flow in the Francis turbine with different runner installation sinking values. The results show that the hydraulic axial force on the inner surface of the runner remains stable when the runner is lowered. The hydraulic axial force on the entire runner surface and the outer surface of the lower band decreases, and the hydraulic axial force on the outer surface of the upper crown clearance increases. All of these hydraulic axial forces gradually tend to stabilize as the amount descending from the runner increases. To study the reasons for the changes in hydraulic axial forces, the streamlines and fluid fields of different sections in the flow passage were analyzed in detail. It was found that periodic changes of vortices were generated in the clearance due to the influences of the geometric shape and wall rotation. These vortices affect the distribution of velocity and pressure and, thus, determine the hydraulic axial forces. The runner axial installation deviation has little influence on the streamlines, pressure, and velocity distribution in each flow passage, and only changes the velocity and pressure in the upper crown clearance and lower band clearance. Therefore, the axial installation deviation of the runner has a great effect on the hydraulic axial force on the outer surface of the upper crown and lower band and has a smaller impact on the runner passage and the hydraulic axial force on the inner surface of the runner. The conclusions in this study can be adopted as references for the installation accuracy control of other hydraulic Francis turbine units.

Suggested Citation

  • Yongsheng Liu & Chengming Liu & Yongsheng Zhang & Xingxing Huang & Tao Guo & Lingjiu Zhou & Zhengwei Wang, 2023. "Influence of Axial Installation Deviation on the Hydraulic Axial Force of the 1000 MW Francis Runner in the Rated Operating Condition," Energies, MDPI, vol. 16(4), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1878-:d:1067820
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1878/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1878/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Trivedi, Chirag & Cervantes, Michel J., 2017. "Fluid-structure interactions in Francis turbines: A perspective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 87-101.
    2. Xing Zhou & Changzheng Shi & Kazuyoshi Miyagawa & Hegao Wu & Jinhong Yu & Zhu Ma, 2020. "Investigation of Pressure Fluctuation and Pulsating Hydraulic Axial Thrust in Francis Turbines," Energies, MDPI, vol. 13(7), pages 1-16, April.
    3. Zhang, Yuning & Zheng, Xianghao & Li, Jinwei & Du, Xiaoze, 2019. "Experimental study on the vibrational performance and its physical origins of a prototype reversible pump turbine in the pumped hydro energy storage power station," Renewable Energy, Elsevier, vol. 130(C), pages 667-676.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Di & Tao, Ran & Xiao, Ruofu & Pan, Litan, 2020. "Solving the runner blade crack problem for a Francis hydro-turbine operating under condition-complexity," Renewable Energy, Elsevier, vol. 149(C), pages 298-320.
    2. Zhou, Xing & Wu, Hegao & Cheng, Li & Huang, Quanshui & Shi, Changzheng, 2023. "A new draft tube shape optimisation methodology of introducing inclined conical diffuser in hydraulic turbine," Energy, Elsevier, vol. 265(C).
    3. Chen, Sheng & Wang, Jing & Zhang, Jian & Yu, Xiaodong & He, Wei, 2020. "Transient behavior of two-stage load rejection for multiple units system in pumped storage plants," Renewable Energy, Elsevier, vol. 160(C), pages 1012-1022.
    4. Hong, Sheng & Wu, Yuping & Wu, Jianhua & Zhang, Yuquan & Zheng, Yuan & Li, Jiahui & Lin, Jinran, 2021. "Microstructure and cavitation erosion behavior of HVOF sprayed ceramic-metal composite coatings for application in hydro-turbines," Renewable Energy, Elsevier, vol. 164(C), pages 1089-1099.
    5. Sun, Longgang & Xu, Hongyang & Li, Chenxi & Guo, Pengcheng & Xu, Zhuofei, 2024. "Unsteady assessment and alleviation of inter-blade vortex in Francis turbine," Applied Energy, Elsevier, vol. 358(C).
    6. Laouari, Ahmed & Ghenaiet, Adel, 2021. "Investigation of steady and unsteady cavitating flows through a small Francis turbine," Renewable Energy, Elsevier, vol. 172(C), pages 841-861.
    7. Krzemianowski, Zbigniew & Steller, Janusz, 2021. "High specific speed Francis turbine for small hydro purposes - Design methodology based on solving the inverse problem in fluid mechanics and the cavitation test experience," Renewable Energy, Elsevier, vol. 169(C), pages 1210-1228.
    8. Nirmal Acharya & Saroj Gautam & Sailesh Chitrakar & Chirag Trivedi & Ole Gunnar Dahlhaug, 2021. "Leakage Vortex Progression through a Guide Vane’s Clearance Gap and the Resulting Pressure Fluctuation in a Francis Turbine," Energies, MDPI, vol. 14(14), pages 1-19, July.
    9. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Dynamic mode decomposition of gas-liquid flow in a rotodynamic multiphase pump," Renewable Energy, Elsevier, vol. 139(C), pages 1159-1175.
    10. Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Li, Xiao-Bin & Muhirwa, Alexis & Li, Biao & Bisengimana, Emmanuel, 2019. "Blade trailing edge position influencing pump as turbine (PAT) pressure field under part-load conditions," Renewable Energy, Elsevier, vol. 136(C), pages 33-47.
    11. Lucie Zemanová & Pavel Rudolf, 2020. "Flow Inside the Sidewall Gaps of Hydraulic Machines: A Review," Energies, MDPI, vol. 13(24), pages 1-37, December.
    12. Presas, Alexandre & Luo, Yongyao & Wang, Zhengwei & Guo, Bao, 2019. "Fatigue life estimation of Francis turbines based on experimental strain measurements: Review of the actual data and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 96-110.
    13. Linghua Kong & Jingwei Cao & Xiangyang Li & Xulei Zhou & Haihong Hu & Tao Wang & Shuxin Gui & Wenfa Lai & Zhongfeng Zhu & Zhengwei Wang & Yan Liu, 2022. "Numerical Analysis on the Hydraulic Thrust and Dynamic Response Characteristics of a Turbine Pump," Energies, MDPI, vol. 15(4), pages 1-15, February.
    14. Tian, Yuqiang & Wang, Bin & Chen, Peng & Yang, Ying, 2021. "Finite-time Takagi–Sugeno fuzzy controller design for hydraulic turbine governing systems with mechanical time delays," Renewable Energy, Elsevier, vol. 173(C), pages 614-624.
    15. Chirag Trivedi & Igor Iliev & Ole Gunnar Dahlhaug, 2020. "Numerical Study of a Francis Turbine over Wide Operating Range: Some Practical Aspects of Verification," Sustainability, MDPI, vol. 12(10), pages 1-10, May.
    16. Su, Wen-Tao & Li, Xiao-Bin & Xia, Yu-Xing & Liu, Quan-Zhong & Binama, Maxime & Zhang, Ya-Ning, 2021. "Pressure fluctuation characteristics of a model pump-turbine during runaway transient," Renewable Energy, Elsevier, vol. 163(C), pages 517-529.
    17. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Dynamic mode decomposition of cavitating flow around ALE 15 hydrofoil," Renewable Energy, Elsevier, vol. 139(C), pages 214-227.
    18. Ying Yang & Bin Wang & Yuqiang Tian & Peng Chen, 2020. "Fractional-Order Finite-Time, Fault-Tolerant Control of Nonlinear Hydraulic-Turbine-Governing Systems with an Actuator Fault," Energies, MDPI, vol. 13(15), pages 1-20, July.
    19. Xuanlin Peng & Jianzhong Zhou & Chu Zhang & Ruhai Li & Yanhe Xu & Diyi Chen, 2017. "An Intelligent Optimization Method for Vortex-Induced Vibration Reducing and Performance Improving in a Large Francis Turbine," Energies, MDPI, vol. 10(11), pages 1-17, November.
    20. Mengqi Yang & Weiqiang Zhao & Huili Bi & Haixia Yang & Qilian He & Xingxing Huang & Zhengwei Wang, 2022. "Flow-Induced Vibration of Non-Rotating Structures of a High-Head Pump-Turbine during Start-Up in Turbine Mode," Energies, MDPI, vol. 15(22), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1878-:d:1067820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.