IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1862-d1067324.html
   My bibliography  Save this article

Load Evaluation for Tower Design of Large Floating Offshore Wind Turbine System According to Wave Conditions

Author

Listed:
  • Hyeonjeong Ahn

    (Korean Research Institute of Ship & Ocean Engineering, Daejeon 34103, Republic of Korea)

  • Yoon-Jin Ha

    (Korean Research Institute of Ship & Ocean Engineering, Daejeon 34103, Republic of Korea)

  • Kyong-Hwan Kim

    (Korean Research Institute of Ship & Ocean Engineering, Daejeon 34103, Republic of Korea)

Abstract

This study entailed a load evaluation for the tower design of a large floating offshore wind turbine system in accordance with the wave conditions. The target model includes the IEA 15 MW reference wind turbine and a semi-submersible VolturnUS-S reference floating offshore wind turbine platform from the University of Maine. The OpenFAST, which is an aero-hydro-servo-elastic fully coupled analysis tool, was used for load analysis. The DLC1.2 and 1.6 were used as the design load cases, and the environmental conditions suitable for the design load cases were cited in the VolturnUS-S platform report. Load evaluation was performed according to time series and FFT results. The findings of the study are as follows: first, in the correlation analysis, the tower-top deflection had the highest correlation, and this further affects nacelle acceleration. Second, the tower-base pitch moment increased with the significant wave height. However, the wave peak period increased until it matched the tower-top deflection frequency and decreased thereafter. Third, the comparison between the normal and severe sea state conditions revealed that the tower-base pitch moments for the two conditions are almost similar, despite the conditions wherein the wave spectral energy differs by a factor of 3.5. Fourth, the tower shape is changed while adjusting the diameter of the tower, and the tower-top and tower-base pitch moments are reviewed using a redesigned tower. Even if the mass is the same, adjusting the diameter of the tower reduces only the pitch moment.

Suggested Citation

  • Hyeonjeong Ahn & Yoon-Jin Ha & Kyong-Hwan Kim, 2023. "Load Evaluation for Tower Design of Large Floating Offshore Wind Turbine System According to Wave Conditions," Energies, MDPI, vol. 16(4), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1862-:d:1067324
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1862/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1862/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shah, Kamran Ali & Meng, Fantai & Li, Ye & Nagamune, Ryozo & Zhou, Yarong & Ren, Zhengru & Jiang, Zhiyu, 2021. "A synthesis of feasible control methods for floating offshore wind turbine system dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Truong, Hoai Vu Anh & Dang, Tri Dung & Vo, Cong Phat & Ahn, Kyoung Kwan, 2022. "Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    2. Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
    3. Chen, Lingte & Yang, Jin & Lou, Chengwei, 2024. "Characterizing ramp events in floating offshore wind power through a fully coupled electrical-mechanical mathematical model," Renewable Energy, Elsevier, vol. 221(C).
    4. Arabgolarcheh, Alireza & Rouhollahi, Amirhossein & Benini, Ernesto, 2023. "Analysis of middle-to-far wake behind floating offshore wind turbines in the presence of multiple platform motions," Renewable Energy, Elsevier, vol. 208(C), pages 546-560.
    5. Qu, Yang & Swales, J. Kim & Hooper, Tara & Austen, Melanie C. & Wang, Xinhao & Papathanasopoulou, Eleni & Huang, Junling & Yan, Xiaoyu, 2023. "Economic trade-offs in marine resource use between offshore wind farms and fisheries in Scottish waters," Energy Economics, Elsevier, vol. 125(C).
    6. Papi, F. & Bianchini, A., 2022. "Technical challenges in floating offshore wind turbine upscaling: A critical analysis based on the NREL 5 MW and IEA 15 MW Reference Turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Mohammad Barooni & Turaj Ashuri & Deniz Velioglu Sogut & Stephen Wood & Shiva Ghaderpour Taleghani, 2022. "Floating Offshore Wind Turbines: Current Status and Future Prospects," Energies, MDPI, vol. 16(1), pages 1-28, December.
    8. Shi Liu & Yi Yang & Chengyuan Wang & Yuangang Tu & Zhenqing Liu, 2021. "Proposal of a Novel Mooring System Using Three-Bifurcated Mooring Lines for Spar-Type Off-Shore Wind Turbines," Energies, MDPI, vol. 14(24), pages 1-33, December.
    9. Grant, Elenya & Johnson, Kathryn & Damiani, Rick & Phadnis, Mandar & Pao, Lucy, 2023. "Buoyancy can ballast control for increased power generation of a floating offshore wind turbine with a light-weight semi-submersible platform," Applied Energy, Elsevier, vol. 330(PB).
    10. Cezary Banaszak & Andrzej Gawlik & Paweł Szcześniak & Marcin Rabe & Katarzyna Widera & Yuriy Bilan & Agnieszka Łopatka & Ewelina Gutowska, 2023. "Economic and Energy Analysis of the Construction of a Wind Farm with Infrastructure in the Baltic Sea," Energies, MDPI, vol. 16(16), pages 1-20, August.
    11. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    12. Xiaoxun, Zhu & Xinyu, Hang & Xiaoxia, Gao & Xing, Yang & Zixu, Xu & Yu, Wang & Huaxin, Liu, 2022. "Research on crack detection method of wind turbine blade based on a deep learning method," Applied Energy, Elsevier, vol. 328(C).
    13. Pustina, L. & Serafini, J. & Pasquali, C. & Solero, L. & Lidozzi, A. & Gennaretti, M., 2023. "A novel resonant controller for sea-induced rotor blade vibratory loads reduction on floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    14. Zheng, Yidan & Liu, Huiwen & Chamorro, Leonardo P. & Zhao, Zhenzhou & Li, Ye & Zheng, Yuan & Tang, Kexin, 2023. "Impact of turbulence level on intermittent-like events in the wake of a model wind turbine," Renewable Energy, Elsevier, vol. 203(C), pages 45-55.
    15. Gao, Qiang & Bechlenberg, Alva & Jayawardhana, Bayu & Ertugrul, Nesimi & Vakis, Antonis I. & Ding, Boyin, 2024. "Techno-economic assessment of offshore wind and hybrid wind–wave farms with energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    16. Emilio García & Antonio Correcher & Eduardo Quiles & Fernando Tamarit & Francisco Morant, 2022. "Control and Supervision Requirements for Floating Hybrid Generator Systems," IJERPH, MDPI, vol. 19(19), pages 1-22, October.
    17. Meng, Fantai & Sergiienko, Nataliia & Ding, Boyin & Zhou, Binzhen & Silva, Leandro Souza Pinheiro Da & Cazzolato, Benjamin & Li, Ye, 2023. "Co-located offshore wind–wave energy systems: Can motion suppression and reliable power generation be achieved simultaneously?," Applied Energy, Elsevier, vol. 331(C).
    18. Ferri, Giulio & Marino, Enzo, 2023. "Site-specific optimizations of a 10 MW floating offshore wind turbine for the Mediterranean Sea," Renewable Energy, Elsevier, vol. 202(C), pages 921-941.
    19. Mousavi, Yashar & Bevan, Geraint & Kucukdemiral, Ibrahim Beklan & Fekih, Afef, 2022. "Sliding mode control of wind energy conversion systems: Trends and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1862-:d:1067324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.