IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1753-d1063617.html
   My bibliography  Save this article

Power Electronics Converters for Electric Vehicle Auxiliaries: State of the Art and Future Trends

Author

Listed:
  • Ramy Kotb

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Sajib Chakraborty

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Dai-Duong Tran

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Ekaterina Abramushkina

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Mohamed El Baghdadi

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Omar Hegazy

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

Abstract

Electric vehicles (EVs) are expected to take over the transportation and mobility market over traditional internal combustion engine (ICE) vehicles soon. The internal power demands of EVs are expected to increase. The reason for this is to achieve a longer driving range for the EV and to provide the required power for the low-voltage (LV) network auxiliary loads. To illustrate, there are extra added sensors, cameras, and small actuating motors, especially for future autonomous vehicles. Therefore, a new electrical/electronic (E/E) architecture is required to convert the high-voltage (HV) traction battery voltage (e.g., 320–800 V DC) to the standard LV levels with high current ratings of 5 kW and more. This HV-LV DC-DC converter is known in the literature as an auxiliary power module (APM). The standard LV rails in an EV are the 12 V/24 V rail to supply for an instant the EV’s lighting and electronic control units (ECUs), while the 48 V rail is required for propulsive loads, such as air compressors and electric power steering systems. Furthermore, in a few applications, this converter is responsible for voltage upwards to support the start of a hybrid vehicle or emergency backup power handling, which requires bidirectional capability. Therefore, in this paper, possible APM topologies for EV applications are presented. In line with this, the main standards and safety requirements of the APMs are presented. Detailed quantitative and qualitative comparisons between topologies and their associated control schemes are discussed. In addition, the placement of the APM in the EV cooling cycle has been investigated and demonstrated. Finally, the industrial trends and future research targets for the APM in automotive applications are outlined.

Suggested Citation

  • Ramy Kotb & Sajib Chakraborty & Dai-Duong Tran & Ekaterina Abramushkina & Mohamed El Baghdadi & Omar Hegazy, 2023. "Power Electronics Converters for Electric Vehicle Auxiliaries: State of the Art and Future Trends," Energies, MDPI, vol. 16(4), pages 1-42, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1753-:d:1063617
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1753/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1753/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jingkai Niu & Xuezhi Wu & Yue Wang & Long Jing & Weige Zhang & Yibin Tong, 2022. "Backward Step-Up Control Strategy for Bidirectional LLC Resonant Converter," Energies, MDPI, vol. 15(12), pages 1-15, June.
    2. Sajib Chakraborty & Hai-Nam Vu & Mohammed Mahedi Hasan & Dai-Duong Tran & Mohamed El Baghdadi & Omar Hegazy, 2019. "DC-DC Converter Topologies for Electric Vehicles, Plug-in Hybrid Electric Vehicles and Fast Charging Stations: State of the Art and Future Trends," Energies, MDPI, vol. 12(8), pages 1-43, April.
    3. Aritra Ghosh, 2020. "Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the Carbon Footprint in the Transport Sector: A Review," Energies, MDPI, vol. 13(10), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yun Zhang & Xiaodong Liu & Tong Li & Zhen Huang & Jinrong Chen, 2024. "A Collaborative Modulation Method of Dual-Side Backflow Power Optimization and Zero-Voltage Switching for Dual Active Bridge," Energies, MDPI, vol. 17(12), pages 1-22, June.
    2. Wojciech Pietrowski & Magdalena Puskarczyk & Jan Szymenderski, 2024. "Fault Detection Methods for Electric Power Steering System Using Hardware in the Loop Simulation," Energies, MDPI, vol. 17(14), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    2. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    3. Rejaul Islam & S M Sajjad Hossain Rafin & Osama A. Mohammed, 2022. "Comprehensive Review of Power Electronic Converters in Electric Vehicle Applications," Forecasting, MDPI, vol. 5(1), pages 1-59, December.
    4. Rafał Kopacz & Michał Harasimczuk & Bartosz Lasek & Rafał Miśkiewicz & Jacek Rąbkowski, 2021. "All-SiC ANPC Submodule for an Advanced 1.5 kV EV Charging System under Various Modulation Methods," Energies, MDPI, vol. 14(17), pages 1-16, September.
    5. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    6. Timo Busch & Michael L. Barnett & Roger Leonard Burritt & Benjamin W. Cashore & R. Edward Freeman & Irene Henriques & Bryan W. Husted & Rajat Panwar & Jonatan Pinkse & Stefan Schaltegger & Jeff York, 2024. "Moving beyond “the” business case: How to make corporate sustainability work," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 776-787, February.
    7. Jiaming Zhou & Chunxiao Feng & Qingqing Su & Shangfeng Jiang & Zhixian Fan & Jiageng Ruan & Shikai Sun & Leli Hu, 2022. "The Multi-Objective Optimization of Powertrain Design and Energy Management Strategy for Fuel Cell–Battery Electric Vehicle," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    8. Duy-Dinh Nguyen & The-Tiep Pham & Tat-Thang Le & Sewan Choi & Kazuto Yukita, 2023. "A Modulation Method for Three-Phase Dual-Active-Bridge Converters in Battery Charging Applications," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    9. Maria Giuffrida & Riccardo Mangiaracina, 2020. "Green Practices for Global Supply Chains in Diverse Industrial, Geographical, and Technological Settings: A Literature Review and Research Agenda," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    10. Dai-Duong Tran & Sajib Chakraborty & Yuanfeng Lan & Mohamed El Baghdadi & Omar Hegazy, 2020. "NSGA-II-Based Codesign Optimization for Power Conversion and Controller Stages of Interleaved Boost Converters in Electric Vehicle Drivetrains," Energies, MDPI, vol. 13(19), pages 1-31, October.
    11. Gull, Muhammad Shuzub & Khalid, Muhammad & Arshad, Naveed, 2024. "Multi-objective optimization of battery swapping station to power up mobile and stationary loads," Applied Energy, Elsevier, vol. 374(C).
    12. Mauro Zucca & Vincenzo Cirimele & Jorge Bruna & Davide Signorino & Erika Laporta & Jacopo Colussi & Miguel Angel Alonso Tejedor & Federico Fissore & Umberto Pogliano, 2021. "Assessment of the Overall Efficiency in WPT Stations for Electric Vehicles," Sustainability, MDPI, vol. 13(5), pages 1-19, February.
    13. Anam Nadeem & Mosè Rossi & Erica Corradi & Lingkang Jin & Gabriele Comodi & Nadeem Ahmed Sheikh, 2022. "Energy-Environmental Planning of Electric Vehicles (EVs): A Case Study of the National Energy System of Pakistan," Energies, MDPI, vol. 15(9), pages 1-19, April.
    14. Jelena Loncarski & Vito Giuseppe Monopoli & Giuseppe Leonardo Cascella & Francesco Cupertino, 2020. "SiC-MOSFET and Si-IGBT-Based dc-dc Interleaved Converters for EV Chargers: Approach for Efficiency Comparison with Minimum Switching Losses Based on Complete Parasitic Modeling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    15. Laura Essak & Aritra Ghosh, 2022. "Floating Photovoltaics: A Review," Clean Technol., MDPI, vol. 4(3), pages 1-18, August.
    16. Hwa-Pyeong Park & Mina Kim & Jee-Hoon Jung, 2020. "A Comprehensive Overview in Control Algorithms for High Switching-Frequency LLC Resonant Converter," Energies, MDPI, vol. 13(17), pages 1-17, August.
    17. Gianluca Valenti & Stefano Murgia & Ida Costanzo & Matteo Scarnera & Francesco Battistella, 2021. "Experimental Determination of the Performances during the Cold Start-Up of an Air Compressor Unit for Electric and Electrified Heavy-Duty Vehicles," Energies, MDPI, vol. 14(12), pages 1-14, June.
    18. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    19. Tomasz Konewka & Joanna Bednarz & Tomasz Czuba, 2021. "Building a Competitive Advantage for Indonesia in the Development of the Regional EV Battery Chain," Energies, MDPI, vol. 14(21), pages 1-13, November.
    20. Yang Yang & Jinlong Cui & Xin Cui, 2020. "Design and Analysis of Magnetic Coils for Optimizing the Coupling Coefficient in an Electric Vehicle Wireless Power Transfer System," Energies, MDPI, vol. 13(16), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1753-:d:1063617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.