IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1355-d1048419.html
   My bibliography  Save this article

Parameter Identification of Doubly-Fed Induction Wind Turbine Based on the ISIAGWO Algorithm

Author

Listed:
  • Fanjie Yang

    (School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China)

  • Yun Zeng

    (School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China)

  • Jing Qian

    (School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China)

  • Youtao Li

    (School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China)

  • Shihao Xie

    (School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China)

Abstract

Variations in generator parameters that occur during the operation of a doubly-fed induction wind turbine (DFIG) constitute a significant factor in the degradation of control performance. To address the problem of difficulty in identifying multiple parameters simultaneously in DFIG, a parameter identification method depending on the adaptive grey wolf algorithm with an information-sharing search strategy (ISIAGWO) is proposed to solve the problem of low accuracy and slow identification speed of multiple parameters in DFIG. The easily obtainable generator outlet current was selected as the observed quantity, and the trajectory sensitivity analysis was performed on the five electrical parameters of the DFIG to derive its discriminability. Finally, the parameter recognition of the DFIG was carried out using the ISIAGWO algorithm in the MATLAB/Simulink simulation software, applying the proposed calculation functions. The experimental results show that the ISIAGWO algorithm has better identification accuracy, stability, and convergence for DFIG’s generator parameter identification.

Suggested Citation

  • Fanjie Yang & Yun Zeng & Jing Qian & Youtao Li & Shihao Xie, 2023. "Parameter Identification of Doubly-Fed Induction Wind Turbine Based on the ISIAGWO Algorithm," Energies, MDPI, vol. 16(3), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1355-:d:1048419
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1355/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1355/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Hansi & Liu, Hang & Chu, Xuening & Liu, Qingxiu & Xue, Deyi, 2021. "Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network," Renewable Energy, Elsevier, vol. 172(C), pages 829-840.
    2. Jia, Ke & Gu, Chenjie & Li, Lun & Xuan, Zhengwen & Bi, Tianshu & Thomas, David, 2018. "Sparse voltage amplitude measurement based fault location in large-scale photovoltaic power plants," Applied Energy, Elsevier, vol. 211(C), pages 568-581.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bingjie Zhai & Kaijian Ou & Yuhong Wang & Tian Cao & Huaqing Dai & Zongsheng Zheng, 2024. "Parameter Identification of PMSG-Based Wind Turbine Based on Sensitivity Analysis and Improved Gray Wolf Optimization," Energies, MDPI, vol. 17(17), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen Zhang & Tao Yang, 2023. "Anomaly Detection for Wind Turbines Using Long Short-Term Memory-Based Variational Autoencoder Wasserstein Generation Adversarial Network under Semi-Supervised Training," Energies, MDPI, vol. 16(19), pages 1-18, October.
    2. Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
    3. Jiang Li & Wenzhen Wei & Shuo Zhang & Guoqing Li & Chenghong Gu, 2018. "Conditional Maximum Likelihood of Three-Phase Phasor Estimation for μPMU in Active Distribution Networks," Energies, MDPI, vol. 11(5), pages 1-18, May.
    4. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
    5. Zeqing Yang & Wenbo Zhang & Wei Cui & Lingxiao Gao & Yingshu Chen & Qiang Wei & Libing Liu, 2022. "Abnormal Detection for Running State of Linear Motor Feeding System Based on Deep Neural Networks," Energies, MDPI, vol. 15(15), pages 1-22, August.
    6. Qian, XiaoYi & Sun, TianHe & Zhang, YuXian & Wang, BaoShi & Awad Gendeel, Mohammed Altayeb, 2023. "Wind turbine fault detection based on spatial-temporal feature and neighbor operation state," Renewable Energy, Elsevier, vol. 219(P1).
    7. Li, Xuan & Zhang, Wei, 2022. "Physics-informed deep learning model in wind turbine response prediction," Renewable Energy, Elsevier, vol. 185(C), pages 932-944.
    8. Wang, Weicheng & Chen, Jinglong & Zhang, Tianci & Liu, Zijun & Wang, Jun & Zhang, Xinwei & He, Shuilong, 2023. "An asymmetrical graph Siamese network for one-classanomaly detection of engine equipment with multi-source fusion," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    9. Feng, Chenlong & Liu, Chao & Jiang, Dongxiang, 2023. "Unsupervised anomaly detection using graph neural networks integrated with physical-statistical feature fusion and local-global learning," Renewable Energy, Elsevier, vol. 206(C), pages 309-323.
    10. Huifan Zeng & Juchuan Dai & Chengming Zuo & Huanguo Chen & Mimi Li & Fan Zhang, 2022. "Correlation Investigation of Wind Turbine Multiple Operating Parameters Based on SCADA Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
    11. Hong, Ying-Yi & Pula, Rolando A., 2022. "Detection and classification of faults in photovoltaic arrays using a 3D convolutional neural network," Energy, Elsevier, vol. 246(C).
    12. Su, Hongzhi & Wang, Chengshan & Li, Peng & Li, Peng & Liu, Zhelin & Wu, Jianzhong, 2019. "Novel voltage-to-power sensitivity estimation for phasor measurement unit-unobservable distribution networks based on network equivalent," Applied Energy, Elsevier, vol. 250(C), pages 302-312.
    13. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    14. Urmeneta, Jon & Izquierdo, Juan & Leturiondo, Urko, 2023. "A methodology for performance assessment at system level—Identification of operating regimes and anomaly detection in wind turbines," Renewable Energy, Elsevier, vol. 205(C), pages 281-292.
    15. Wang, Han & Zhang, Ning & Du, Ershun & Yan, Jie & Han, Shuang & Li, Nan & Li, Hongxia & Liu, Yongqian, 2023. "An adaptive identification method of abnormal data in wind and solar power stations," Renewable Energy, Elsevier, vol. 208(C), pages 76-93.
    16. Li, Tong & Wang, Zhaohua & Zhao, Wenhui, 2022. "Comparison and application potential analysis of autoencoder-based electricity pattern mining algorithms for large-scale demand response," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    17. Mohammad Barooni & Turaj Ashuri & Deniz Velioglu Sogut & Stephen Wood & Shiva Ghaderpour Taleghani, 2022. "Floating Offshore Wind Turbines: Current Status and Future Prospects," Energies, MDPI, vol. 16(1), pages 1-28, December.
    18. Xiangyu Kong & Xiaoxiao Yuan & Yuting Wang & Yong Xu & Li Yu, 2019. "Research on Optimal D-PMU Placement Technology to Improve the Observability of Smart Distribution Networks," Energies, MDPI, vol. 12(22), pages 1-23, November.
    19. Bingjie Zhai & Kaijian Ou & Yuhong Wang & Tian Cao & Huaqing Dai & Zongsheng Zheng, 2024. "Parameter Identification of PMSG-Based Wind Turbine Based on Sensitivity Analysis and Improved Gray Wolf Optimization," Energies, MDPI, vol. 17(17), pages 1-15, August.
    20. Sapountzoglou, Nikolaos & Lago, Jesus & De Schutter, Bart & Raison, Bertrand, 2020. "A generalizable and sensor-independent deep learning method for fault detection and location in low-voltage distribution grids," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1355-:d:1048419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.