Parameter Identification of Doubly-Fed Induction Wind Turbine Based on the ISIAGWO Algorithm
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Chen, Hansi & Liu, Hang & Chu, Xuening & Liu, Qingxiu & Xue, Deyi, 2021. "Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network," Renewable Energy, Elsevier, vol. 172(C), pages 829-840.
- Jia, Ke & Gu, Chenjie & Li, Lun & Xuan, Zhengwen & Bi, Tianshu & Thomas, David, 2018. "Sparse voltage amplitude measurement based fault location in large-scale photovoltaic power plants," Applied Energy, Elsevier, vol. 211(C), pages 568-581.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bingjie Zhai & Kaijian Ou & Yuhong Wang & Tian Cao & Huaqing Dai & Zongsheng Zheng, 2024. "Parameter Identification of PMSG-Based Wind Turbine Based on Sensitivity Analysis and Improved Gray Wolf Optimization," Energies, MDPI, vol. 17(17), pages 1-15, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen Zhang & Tao Yang, 2023. "Anomaly Detection for Wind Turbines Using Long Short-Term Memory-Based Variational Autoencoder Wasserstein Generation Adversarial Network under Semi-Supervised Training," Energies, MDPI, vol. 16(19), pages 1-18, October.
- Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
- Zeqing Yang & Wenbo Zhang & Wei Cui & Lingxiao Gao & Yingshu Chen & Qiang Wei & Libing Liu, 2022. "Abnormal Detection for Running State of Linear Motor Feeding System Based on Deep Neural Networks," Energies, MDPI, vol. 15(15), pages 1-22, August.
- Christian Gück & Cyriana M. A. Roelofs & Stefan Faulstich, 2024. "CARE to Compare: A Real-World Benchmark Dataset for Early Fault Detection in Wind Turbine Data," Data, MDPI, vol. 9(12), pages 1-16, November.
- Li, Xuan & Zhang, Wei, 2022. "Physics-informed deep learning model in wind turbine response prediction," Renewable Energy, Elsevier, vol. 185(C), pages 932-944.
- Feng, Chenlong & Liu, Chao & Jiang, Dongxiang, 2023. "Unsupervised anomaly detection using graph neural networks integrated with physical-statistical feature fusion and local-global learning," Renewable Energy, Elsevier, vol. 206(C), pages 309-323.
- Hong, Ying-Yi & Pula, Rolando A., 2022. "Detection and classification of faults in photovoltaic arrays using a 3D convolutional neural network," Energy, Elsevier, vol. 246(C).
- Su, Hongzhi & Wang, Chengshan & Li, Peng & Li, Peng & Liu, Zhelin & Wu, Jianzhong, 2019. "Novel voltage-to-power sensitivity estimation for phasor measurement unit-unobservable distribution networks based on network equivalent," Applied Energy, Elsevier, vol. 250(C), pages 302-312.
- Wang, Han & Zhang, Ning & Du, Ershun & Yan, Jie & Han, Shuang & Li, Nan & Li, Hongxia & Liu, Yongqian, 2023. "An adaptive identification method of abnormal data in wind and solar power stations," Renewable Energy, Elsevier, vol. 208(C), pages 76-93.
- Bingjie Zhai & Kaijian Ou & Yuhong Wang & Tian Cao & Huaqing Dai & Zongsheng Zheng, 2024. "Parameter Identification of PMSG-Based Wind Turbine Based on Sensitivity Analysis and Improved Gray Wolf Optimization," Energies, MDPI, vol. 17(17), pages 1-15, August.
- Cezary Banaszak & Andrzej Gawlik & Paweł Szcześniak & Marcin Rabe & Katarzyna Widera & Yuriy Bilan & Agnieszka Łopatka & Ewelina Gutowska, 2023. "Economic and Energy Analysis of the Construction of a Wind Farm with Infrastructure in the Baltic Sea," Energies, MDPI, vol. 16(16), pages 1-20, August.
- Chen, Zhen & Zhou, Di & Zio, Enrico & Xia, Tangbin & Pan, Ershun, 2023. "Adaptive transfer learning for multimode process monitoring and unsupervised anomaly detection in steam turbines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Sun, Chenhao & Wang, Xin & Zheng, Yihui, 2020. "An ensemble system to predict the spatiotemporal distribution of energy security weaknesses in transmission networks," Applied Energy, Elsevier, vol. 258(C).
- Zhan, Jun & Wu, Chengkun & Yang, Canqun & Miao, Qiucheng & Wang, Shilin & Ma, Xiandong, 2022. "Condition monitoring of wind turbines based on spatial-temporal feature aggregation networks," Renewable Energy, Elsevier, vol. 200(C), pages 751-766.
- Peivand, Ali & Azad Farsani, Ehsan & Abdolmohammadi, Hamid Reza, 2024. "Accelerating optimal scheduling prediction in power system: A multi-faceted GAN-assisted prediction framework," Renewable Energy, Elsevier, vol. 230(C).
- Jiang Li & Wenzhen Wei & Shuo Zhang & Guoqing Li & Chenghong Gu, 2018. "Conditional Maximum Likelihood of Three-Phase Phasor Estimation for ?PMU in Active Distribution Networks," Energies, MDPI, vol. 11(5), pages 1-18, May.
- Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
- Qian, XiaoYi & Sun, TianHe & Zhang, YuXian & Wang, BaoShi & Awad Gendeel, Mohammed Altayeb, 2023. "Wind turbine fault detection based on spatial-temporal feature and neighbor operation state," Renewable Energy, Elsevier, vol. 219(P1).
- Wang, Weicheng & Chen, Jinglong & Zhang, Tianci & Liu, Zijun & Wang, Jun & Zhang, Xinwei & He, Shuilong, 2023. "An asymmetrical graph Siamese network for one-classanomaly detection of engine equipment with multi-source fusion," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Huifan Zeng & Juchuan Dai & Chengming Zuo & Huanguo Chen & Mimi Li & Fan Zhang, 2022. "Correlation Investigation of Wind Turbine Multiple Operating Parameters Based on SCADA Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
More about this item
Keywords
doubly-fed induction wind turbine; trajectory sensitivity; parameter identification; ISIAGWO algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1355-:d:1048419. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.