IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1320-d148382.html
   My bibliography  Save this article

Conditional Maximum Likelihood of Three-Phase Phasor Estimation for μPMU in Active Distribution Networks

Author

Listed:
  • Jiang Li

    (School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Wenzhen Wei

    (School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Shuo Zhang

    (School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Guoqing Li

    (School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Chenghong Gu

    (Department of Electronic & Electrical Engineering, University of Bath, Bath BA2 7AY, UK)

Abstract

Micro phasor measurement units (μPMU) installed in active distribution networks are very useful for improving observability by acquiring system real-time data. However, three-phase imbalance and harmonic power flows adversely impact the accuracy of synchronous measurements, which implies the importance of phasor estimation errors. This paper proposes a new phasor estimation algorithm for μPMU in active distribution networks that uses a conditional maximum likelihood (CML) estimation method. Firstly, the signal model of three-phase, three-wire and four-wire imbalance systems is established. Then, the probability distributions of the magnitude and phase angles are derived from the geometric characteristics of the CML method by solving the geometric equation. Simulation results show that the proposed CML based method is effective for estimating phasor and impedance models of active distribution networks by using μPMU measurement data.

Suggested Citation

  • Jiang Li & Wenzhen Wei & Shuo Zhang & Guoqing Li & Chenghong Gu, 2018. "Conditional Maximum Likelihood of Three-Phase Phasor Estimation for μPMU in Active Distribution Networks," Energies, MDPI, vol. 11(5), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1320-:d:148382
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1320/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1320/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heng-Yi Su & Tzu-Yi Liu, 2017. "A PMU-Based Method for Smart Transmission Grid Voltage Security Visualization and Monitoring," Energies, MDPI, vol. 10(8), pages 1-16, July.
    2. Jia, Ke & Gu, Chenjie & Li, Lun & Xuan, Zhengwen & Bi, Tianshu & Thomas, David, 2018. "Sparse voltage amplitude measurement based fault location in large-scale photovoltaic power plants," Applied Energy, Elsevier, vol. 211(C), pages 568-581.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malgorzata Binek & Andrzej Kanicki & Pawel Rozga, 2021. "Application of an Artificial Neural Network for Measurements of Synchrophasor Indicators in the Power System," Energies, MDPI, vol. 14(9), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Ying-Yi & Pula, Rolando A., 2022. "Detection and classification of faults in photovoltaic arrays using a 3D convolutional neural network," Energy, Elsevier, vol. 246(C).
    2. Do-In Kim, 2021. "Complementary Feature Extractions for Event Identification in Power Systems Using Multi-Channel Convolutional Neural Network," Energies, MDPI, vol. 14(15), pages 1-15, July.
    3. Su, Hongzhi & Wang, Chengshan & Li, Peng & Li, Peng & Liu, Zhelin & Wu, Jianzhong, 2019. "Novel voltage-to-power sensitivity estimation for phasor measurement unit-unobservable distribution networks based on network equivalent," Applied Energy, Elsevier, vol. 250(C), pages 302-312.
    4. Xiangyu Kong & Xiaoxiao Yuan & Yuting Wang & Yong Xu & Li Yu, 2019. "Research on Optimal D-PMU Placement Technology to Improve the Observability of Smart Distribution Networks," Energies, MDPI, vol. 12(22), pages 1-23, November.
    5. Fanjie Yang & Yun Zeng & Jing Qian & Youtao Li & Shihao Xie, 2023. "Parameter Identification of Doubly-Fed Induction Wind Turbine Based on the ISIAGWO Algorithm," Energies, MDPI, vol. 16(3), pages 1-19, January.
    6. Bingjie Zhai & Kaijian Ou & Yuhong Wang & Tian Cao & Huaqing Dai & Zongsheng Zheng, 2024. "Parameter Identification of PMSG-Based Wind Turbine Based on Sensitivity Analysis and Improved Gray Wolf Optimization," Energies, MDPI, vol. 17(17), pages 1-15, August.
    7. Sapountzoglou, Nikolaos & Lago, Jesus & De Schutter, Bart & Raison, Bertrand, 2020. "A generalizable and sensor-independent deep learning method for fault detection and location in low-voltage distribution grids," Applied Energy, Elsevier, vol. 276(C).
    8. Zhao, Zhida & Yu, Hao & Li, Peng & Li, Peng & Kong, Xiangyu & Wu, Jianzhong & Wang, Chengshan, 2019. "Optimal placement of PMUs and communication links for distributed state estimation in distribution networks," Applied Energy, Elsevier, vol. 256(C).
    9. Dey, Maitreyee & Rana, Soumya Prakash & Simmons, Clarke V. & Dudley, Sandra, 2021. "Solar farm voltage anomaly detection using high-resolution μPMU data-driven unsupervised machine learning," Applied Energy, Elsevier, vol. 303(C).
    10. Sun, Chenhao & Wang, Xin & Zheng, Yihui, 2020. "An ensemble system to predict the spatiotemporal distribution of energy security weaknesses in transmission networks," Applied Energy, Elsevier, vol. 258(C).
    11. Anan Zhang & Huang Huang & Wei Yang & Hongwei Li, 2019. "Multivariable Regression Equivalent Model of Interconnected Active Distribution Networks Based on Boundary Measurement," Energies, MDPI, vol. 12(12), pages 1-17, June.
    12. Heng-Yi Su & Tzu-Yi Liu, 2017. "GECM-Based Voltage Stability Assessment Using Wide-Area Synchrophasors," Energies, MDPI, vol. 10(10), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1320-:d:148382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.