IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1016-d1038308.html
   My bibliography  Save this article

ELM-Based Adaptive Practical Fixed-Time Voltage Regulation in Wireless Power Transfer System

Author

Listed:
  • Youhao Hu

    (Sustainable Energy and Environment Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China)

  • Bowang Zhang

    (Sustainable Energy and Environment Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China)

  • Weikang Hu

    (Sustainable Energy and Environment Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China)

  • Wei Han

    (Sustainable Energy and Environment Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
    Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR 999077, China
    HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518048, China)

Abstract

This paper proposes an extreme learning machine (ELM)-based adaptive sliding mode control strategy for the receiver-side buck converter system in the wireless power transfer system subjecting to the lumped uncertainty. The proposed control strategy utilizes a singularity-free fixed-time sliding mode (FTSM) feedback control, which ensures a fixed-time convergence for both the sliding variable and voltage tracking error. An ELM-based uncertainty bound estimator is further designed to learn the uncertainty bound information in real-time, which opportunely loosens the constraint of bound information requirement for sliding mode control design. The global stability of the closed-loop system is rigidly analyzed, and the good performance of the proposed control strategy is validated by comparison experiments which exhibit ideal overshoot elimination, 45.70–51.72% reduction of settling time, and 13.65–36.96% reduction of the root mean square value for voltage tracking error with respect to different load types.

Suggested Citation

  • Youhao Hu & Bowang Zhang & Weikang Hu & Wei Han, 2023. "ELM-Based Adaptive Practical Fixed-Time Voltage Regulation in Wireless Power Transfer System," Energies, MDPI, vol. 16(3), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1016-:d:1038308
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1016/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1016/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zongyu Zuo & Lin Tie, 2016. "Distributed robust finite-time nonlinear consensus protocols for multi-agent systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(6), pages 1366-1375, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Yuliang & Dai, Jing & Zhang, Huaguang & Wang, Yingchun, 2021. "Fixed-time leader-following/containment consensus of nonlinear multi-agent systems based on event-triggered mechanism," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    2. Cui, Guozeng & Xu, Hui & Yu, Jinpeng & Ma, Jiali & Li, Ze, 2023. "Fixed-time distributed adaptive attitude control for multiple QUAVs with quantized input," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    3. Gao, Shuo & Wen, Guoguang & Zhai, Xiaoqin & Zheng, Peng, 2023. "Finite-/fixed-time bipartite consensus for first-order multi-agent systems via impulsive control," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    4. Zhiyong Luo & Hongliang Liu & Zigen Ouyang, 2023. "Fixed-Time Formation Tracking Control of Nonlinear Multi-Agent Systems with Directed Topology and Disturbance," Mathematics, MDPI, vol. 11(13), pages 1-17, June.
    5. Shafaat Ullah & Laiq Khan & Irfan Sami & Ghulam Hafeez & Fahad R. Albogamy, 2021. "A Distributed Hierarchical Control Framework for Economic Dispatch and Frequency Regulation of Autonomous AC Microgrids," Energies, MDPI, vol. 14(24), pages 1-23, December.
    6. Zhang, Wanli & Yang, Xinsong & Yang, Shiju & Alsaedi, Ahmed, 2021. "Finite-time and fixed-time bipartite synchronization of complex networks with signed graphs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 319-329.
    7. Xing, Ying & He, Xinyi & Li, Xiaodi, 2023. "Lyapunov conditions for finite-time stability of disturbed nonlinear impulsive systems," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    8. Hu, Jingting & Sui, Guixia & Li, Xiaodi, 2020. "Fixed-time synchronization of complex networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    9. Runze Chen & Zhenling Wang & Weiwei Che, 2022. "Adaptive Sliding Mode Attitude-Tracking Control of Spacecraft with Prescribed Time Performance," Mathematics, MDPI, vol. 10(3), pages 1-18, January.
    10. Yilun Shang & Yamei Ye, 2017. "Leader-Follower Fixed-Time Group Consensus Control of Multiagent Systems under Directed Topology," Complexity, Hindawi, vol. 2017, pages 1-9, March.
    11. Guo, Wanli & He, Wennuo & Shi, Lili & Sun, Wen & Lu, Xiaoqing, 2021. "Fixed-time consensus tracking for nonlinear stochastically disturbed multi-agent systems via discontinuous protocols," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    12. Jin, Zengke & Wang, Chaoli & Liang, Dong & Zuo, Zongyu & Liang, Zhenying, 2024. "Fixed-time cooperative output regulation for second-order nonlinear multiagent systems with an unknown exosystem," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    13. Dutta, Maitreyee & Roy, Binoy Krishna, 2021. "A new memductance-based fractional-order chaotic system and its fixed-time synchronisation," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    14. Kanchanaharuthai, Adirak & Mujjalinvimut, Ekkachai, 2022. "Fixed-time command-filtered backstepping control design for hydraulic turbine regulating systems," Renewable Energy, Elsevier, vol. 184(C), pages 1091-1103.
    15. Shirkavand, Mehrdad & Pourgholi, Mahdi, 2018. "Robust fixed-time synchronization of fractional order chaotic using free chattering nonsingular adaptive fractional sliding mode controller design," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 135-147.
    16. Hang Wang & Yanfei Dong & Guofeng He & Wenbin Song, 2024. "Fixed-Time Backstepping Sliding-Mode Control for Interleaved Boost Converter in DC Microgrids," Energies, MDPI, vol. 17(21), pages 1-20, October.
    17. Luke Li & Dongshu Wang, 2022. "On Finite/Fixed-Time Stability Theorems of Discontinuous Differential Equations," Mathematics, MDPI, vol. 10(13), pages 1-14, June.
    18. Mohamed Zaery & Panbao Wang & Wei Wang & Dianguo Xu, 2022. "A Novel Optimal Power Allocation Control System with High Convergence Rate for DC Microgrids Cluster," Energies, MDPI, vol. 15(11), pages 1-22, May.
    19. Yaosong Long & Chao Ou & Chengjun Shan & Zhongtao Cheng, 2023. "A Novel Fixed-Time Convergence Guidance Law against Maneuvering Targets," Mathematics, MDPI, vol. 11(9), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1016-:d:1038308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.