IDEAS home Printed from https://ideas.repec.org/a/eme/afrpps/v70y2010i2p184-200.html
   My bibliography  Save this article

Cost evaluation of alternative switchgrass producing, harvesting, storing, and transporting systems and their logistics in the Southeastern USA

Author

Listed:
  • James A. Larson
  • Tun‐Hsiang Yu
  • Burton C. English
  • Daniel F. Mooney
  • Chenguang Wang

Abstract

Purpose - The US Department of Energy has a goal to make ethanol from biomass cost competitive with petroleum by 2012. Feedstock procurement is expected to represent a significant portion of the operating costs for a refinery that produces ethanol from biomass such as switchgrass. Thus, cost‐effective feedstock logistics will be a key factor for the future development of a capital intensive cellulosic ethanol industry. The purpose of this paper is to analyze the cost of various logistic methods of switchgrass production, harvesting, storing, and transportation. Design/methodology/approach - This study applied enterprise budgeting and geographical information system (GIS) software to analyze the costs of three logistic methods of acquiring switchgrass feedstock for a 25 million gallon per year refinery. Procurement methods included traditional large round and rectangular bale harvest and storage systems and satellite preprocessing facilities using field‐chopped material. The analysis evaluated tradeoffs in operating costs, dry matter losses during storage, and investment requirements among the three systems. Findings - Results suggest that the preprocessing system outperformed the conventional bale harvest methods in the delivered costs of switchgrass. Practical implications - The cost savings in harvest, transportation, and dry matter losses for the preprocessing system offset their extensive capital costs and generated cost advantages over the conventional methods. Social implications - The traditional round bale system has a higher overall investment cost, may not be the most cost‐effective way to procure switchgrass feedstock for a refinery, and may limit farmer participation in the feedstock value chain. Originality/value - GIS methods combined with enterprise budgeting can be useful tools for evaluating investment in feedstock supply chain infrastructure.

Suggested Citation

  • James A. Larson & Tun‐Hsiang Yu & Burton C. English & Daniel F. Mooney & Chenguang Wang, 2010. "Cost evaluation of alternative switchgrass producing, harvesting, storing, and transporting systems and their logistics in the Southeastern USA," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 70(2), pages 184-200, August.
  • Handle: RePEc:eme:afrpps:v:70:y:2010:i:2:p:184-200
    DOI: 10.1108/00021461011064950
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/00021461011064950/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/00021461011064950/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/00021461011064950?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jensen, Kimberly L. & Clark, Christopher D. & Ellis, Pamela & English, Burton C. & Menard, R. Jamey & Walsh, Marie E., 2006. "Farmer Willingness to Grow Switchgrass for Energy Production," 2006 Annual meeting, July 23-26, Long Beach, CA 21355, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    2. Larson, James A. & Mooney, Daniel F. & English, Burton C. & Tyler, Donald D., 2010. "Cost Analysis of Alternative Harvest and Storage Methods for Switchgrass in the Southeastern U.S," 2010 Annual Meeting, February 6-9, 2010, Orlando, Florida 56518, Southern Agricultural Economics Association.
    3. Lawrence D. Mapemba & Francis M. Epplin & Charles M. Taliaferro & Raymond L. Huhnke, 2007. "Biorefinery Feedstock Production on Conservation Reserve Program Land," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 29(2), pages 227-246.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    2. Sharma, Bijay P. & Yu, T. Edward & English, Burton C. & Boyer, Christopher N. & Larson, James A., 2020. "Impact of government subsidies on a cellulosic biofuel sector with diverse risk preferences toward feedstock uncertainty," Energy Policy, Elsevier, vol. 146(C).
    3. Larson, James A. & Yu, T. Edward & English, Burton C. & Jensen, Kimberly L. & Gao, Yuan & Wang, Chenguang, 2015. "Effect of outdoor storage losses on feedstock inventory management and plant-gate cost for a switchgrass conversion facility in East Tennessee," Renewable Energy, Elsevier, vol. 74(C), pages 803-814.
    4. Zhou, Xia “Vivian” & Clark, Christopher D. & Lambert, Dayton M. & English, Burton C. & Larson, James A. & Boyer, Christopher N., 2015. "Biomass supply and nutrient runoff abatement under alternative biofuel feedstock production subsidies," Agricultural Systems, Elsevier, vol. 139(C), pages 250-259.
    5. Zhong, Jia & Yu, T. Edward & Larson, James A. & English, Burton C. & Fu, Joshua S. & Calcagno, James, 2016. "Analysis of environmental and economic tradeoffs in switchgrass supply chains for biofuel production," Energy, Elsevier, vol. 107(C), pages 791-803.
    6. Okwo, Adaora & Thomas, Valerie M., 2014. "Biomass feedstock contracts: Role of land quality and yield variability in near term feasibility," Energy Economics, Elsevier, vol. 42(C), pages 67-80.
    7. Yu, Tun-Hsiang (Edward) & English, Burton C. & Larson, James A. & De La Torre Ugarte, Daniel G. & Fu, Joshua S. & Richards, Stephen, 2011. "Evaluating the Impacts of Biomass Feedstock Transportation on Air Quality: A Tennessee Case Study," Staff Papers 127657, University of Tennessee, Department of Agricultural and Resource Economics.
    8. He-Lambert, Lixia & English, Burton C. & Lambert, Dayton M. & Shylo, Oleg & Larson, James A. & Yu, T. Edward & Wilson, Bradly, 2018. "Determining a geographic high resolution supply chain network for a large scale biofuel industry," Applied Energy, Elsevier, vol. 218(C), pages 266-281.
    9. Cahill, Nathanial & Popp, Michael & West, Charles & Rocateli, Alexandre & Ashworth, Amanda & Farris, Rodney & Dixon, Bruce, 2014. "Switchgrass Harvest Time Effects on Nutrient Use and Yield: An Economic Analysis," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 46(4), pages 487-507, November.
    10. Chugh, Shikha & Yu, T. Edward & Jackson, Samuel & Larson, James & English, Burton & Cho, Seong-Hoon, 2015. "Exploring the Potential to Penetrate the Energy Markets for Tennessee-Produced Switchgrass," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196899, Southern Agricultural Economics Association.
    11. Lan, Kai & Ou, Longwen & Park, Sunkyu & Kelley, Stephen S. & English, Burton C. & Yu, T. Edward & Larson, James & Yao, Yuan, 2021. "Techno-Economic Analysis of decentralized preprocessing systems for fast pyrolysis biorefineries with blended feedstocks in the southeastern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Gouzaye, Amadou & Epplin, Francis M., 2016. "Land requirements, feedstock haul distance, and expected profit response to land use restrictions for switchgrass production," Energy Economics, Elsevier, vol. 58(C), pages 59-66.
    13. Seyed Ali Haji Esmaeili & Ahmad Sobhani & Sajad Ebrahimi & Joseph Szmerekovsky & Alan Dybing & Amin Keramati, 2023. "Location Allocation of Biorefineries for a Switchgrass-Based Bioethanol Supply Chain Using Energy Consumption and Emissions," Logistics, MDPI, vol. 7(1), pages 1-22, January.
    14. Zhang, Jun & Osmani, Atif & Awudu, Iddrisu & Gonela, Vinay, 2013. "An integrated optimization model for switchgrass-based bioethanol supply chain," Applied Energy, Elsevier, vol. 102(C), pages 1205-1217.
    15. Yu, T. Edward & Wang, Zidong & English, Burton C. & Larson, James A., 2014. "Designing a Dedicated Energy Crop Supply System in Tennessee: A Multiobjective Optimization Analysis," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 46(3), pages 1-17, August.
    16. Albashabsheh, Nibal T. & Heier Stamm, Jessica L., 2019. "Optimization of lignocellulosic biomass-to-biofuel supply chains with mobile pelleting," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 545-562.
    17. Yu, T. Edward & Larson, James A. & English, Burton C. & Fu, Joshua S. & Calcagno III, Jimmy & Wilson, Bradly, 2016. "Dedicated Energy Crop Supply Chair and Associated Feedstock Transportation Emissions: A Case Study of Tennessee," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 55(1), April.
    18. Maria F. Aranguren & Krystel K. Castillo-Villar & Mario Aboytes-Ojeda & Marcio H. Giacomoni, 2018. "Simulation-Optimization Approach for the Logistics Network Design of Biomass Co-Firing with Coal at Power Plants," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    19. Haji Esmaeili, Seyed Ali & Sobhani, Ahmad & Szmerekovsky, Joseph & Dybing, Alan & Pourhashem, Ghasideh, 2020. "First-generation vs. second-generation: A market incentives analysis for bioethanol supply chains with carbon policies," Applied Energy, Elsevier, vol. 277(C).
    20. Sharp, Benjamin E. & Miller, Shelie A., 2014. "Estimating maximum land use change potential from a regional biofuel industry," Energy Policy, Elsevier, vol. 65(C), pages 261-269.
    21. Olli-Jussi Korpinen & Mika Aalto & Raghu KC & Timo Tokola & Tapio Ranta, 2023. "Utilisation of Spatial Data in Energy Biomass Supply Chain Research—A Review," Energies, MDPI, vol. 16(2), pages 1-23, January.
    22. Bansal, Ankit & Illukpitiya, Prabodh & Singh, Surendra P. & Tegegne, Fisseha, 2013. "Economic competitiveness of ethanol production from cellulosic feedstock in Tennessee," Renewable Energy, Elsevier, vol. 59(C), pages 53-57.
    23. Yu, Edward T. & Fu, Joshua S. & Larson, James A. & English, Burton C. & De La Torre Ugarte, Daniel & Wilson, Bradly & Yun, Jeongran & Gao, Yuan & Calcagno, Jimmy, 2012. "The Transportation Emission Impact of the Biomass Feedstock Traffic of A Potential Commercial-Scale Biorefinery in East Tennessee," 53rd Annual Transportation Research Forum, Tampa, Florida, March 15-17, 2012 207080, Transportation Research Forum.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosburg, Alicia & Miranowski, John & Jacobs, Keri, 2013. "Cellulosic Biofuel Supply with Heterogeneous Biomass Suppliers: An Application to Switchgrass-based Ethanol," Staff General Research Papers Archive 36359, Iowa State University, Department of Economics.
    2. Gouzaye, Amadou & Epplin, Francis, 2016. "Restricting Switchgrass Biomass Feedstock Production to Marginal Land to Limit Competition with Food Production," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 229200, Southern Agricultural Economics Association.
    3. Lynes, Melissa K. & Bergtold, Jason S. & Williams, Jeffery R. & Fewell, Jason E., 2016. "Willingness of Kansas farm managers to produce alternative cellulosic biofuel feedstocks: An analysis of adoption and initial acreage allocation," Energy Economics, Elsevier, vol. 59(C), pages 336-348.
    4. Mooney, Daniel F. & Roberts, Roland K. & English, Burton C. & Tyler, Donald D. & Larson, James A., 2008. "Switchgrass Production in Marginal Environments: A Comparative Economic Analysis across Four West Tennessee Landscapes," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6403, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    5. Oskar Englund & Ioannis Dimitriou & Virginia H. Dale & Keith L. Kline & Blas Mola‐Yudego & Fionnuala Murphy & Burton English & John McGrath & Gerald Busch & Maria Cristina Negri & Mark Brown & Kevin G, 2020. "Multifunctional perennial production systems for bioenergy: performance and progress," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(5), September.
    6. Sylvie Démurger & Haiyuan Wan, 2012. "Payments for ecological restoration and internal migration in China: the sloping land conversion program in Ningxia," IZA Journal of Migration and Development, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 1(1), pages 1-22, December.
    7. Xia Vivian Zhou & Kimberly L. Jensen & James A. Larson & Burton C. English, 2021. "Farmer Interest in and Willingness to Grow Pennycress as an Energy Feedstock," Energies, MDPI, vol. 14(8), pages 1-16, April.
    8. Granoszewski, Karol & Spiller, Achim, 2013. "Langfristige Rohstoffsicherung in der Supply Chain Biogas: Status Quo und Potenziale vertraglicher Zusammenarbeit," Department of Agricultural and Rural Development (DARE) Discussion Papers 260820, Georg-August-Universitaet Goettingen, Department of Agricultural Economics and Rural Development (DARE).
    9. McLeod, Elizabeth & Jensen, Kimberly & Griffith, Andrew & Lewis, Karen, 2017. "Tennessee Beef Producers' Willingness to Participate in a Tennessee Branded Beef Program," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252649, Southern Agricultural Economics Association.
    10. Halit Üster & Gökhan Memişoğlu, 2018. "Biomass Logistics Network Design Under Price-Based Supply and Yield Uncertainty," Transportation Science, INFORMS, vol. 52(2), pages 474-492, March.
    11. Fumasi, Roland J. & Klose, Steven L. & Kaase, Greg H. & Richardson, James W. & Outlaw, Joe L., 2008. "Viability of cellulosic feedstock production from producer to biorefinery," Integration of Agricultural and Energy Systems Conference, February 12-13, 2008, Atlanta, Georgia 48716, Farm Foundation.
    12. Fewell, Jason E. & Bergtold, Jason S. & Williams, Jeffery R., 2011. "Farmers’ Willingness to Grow Switchgrass as a Cellulosic Bioenergy Crop: A Stated Choice Approach," 2011 Annual Meeting, June 29-July 1, 2011, Banff, Alberta,Canada 109776, Western Agricultural Economics Association.
    13. Morris, Brittany D. & Richardson, James W. & Frosch, Brian J. & Outlaw, Joe L. & Rooney, William L., 2009. "Economic Feasibility of Ethanol Production from Sweet Sorghum Juice in Texas," 2009 Annual Meeting, January 31-February 3, 2009, Atlanta, Georgia 46852, Southern Agricultural Economics Association.
    14. Rosburg, Alicia & Miranowski, John & Jacobs, Keri, 2013. "Cellulosic biofuel potential under land constraints: locations, plant sizes and feedstock supply costs," ISU General Staff Papers 201308130700001049, Iowa State University, Department of Economics.
    15. Feng Song & Jinhua Zhao & Scott M. Swinton, 2011. "Switching to Perennial Energy Crops Under Uncertainty and Costly Reversibility," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 764-779.
    16. Jiang, Yong & Swinton, Scott M., 2008. "Market Interactions, Farmer Choices, and the Sustainability of Growing Advanced Biofuels," Staff Paper Series 43634, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    17. Dickson, Amanda & Dicks, Michael R., 2008. "Potential Economic Impacts of the Managed Haying and Grazing Provision of CRP," 2009 Annual Meeting, January 31-February 3, 2009, Atlanta, Georgia 46807, Southern Agricultural Economics Association.
    18. Sharp, Benjamin E. & Miller, Shelie A., 2014. "Estimating maximum land use change potential from a regional biofuel industry," Energy Policy, Elsevier, vol. 65(C), pages 261-269.
    19. Jeremy Porter & Philip Mason & Frank Howell, 2013. "Metropolitan Influence and Land Use Competition in Potential Biomass Crop Production: A Spatial Demographic Analysis," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 32(2), pages 285-310, April.
    20. Nunes, L.J.R. & Causer, T.P. & Ciolkosz, D., 2020. "Biomass for energy: A review on supply chain management models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:afrpps:v:70:y:2010:i:2:p:184-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.