IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p8115-d1301908.html
   My bibliography  Save this article

Application and Challenges of Coalitional Game Theory in Power Systems for Sustainable Energy Trading Communities

Author

Listed:
  • Filipe Bandeiras

    (Smart Cities Research Center (Ci2-IPT), 2300-313 Tomar, Portugal)

  • Álvaro Gomes

    (Institute for Systems Engineering and Computers at Coimbra (INESC Coimbra), 3030-290 Coimbra, Portugal)

  • Mário Gomes

    (Smart Cities Research Center (Ci2-IPT), 2300-313 Tomar, Portugal)

  • Paulo Coelho

    (Smart Cities Research Center (Ci2-IPT), 2300-313 Tomar, Portugal)

Abstract

The role of prosumers is changing as they become active and empowered members of the grid by exchanging energy. This introduces bidirectional power flow and other challenges into the existing power systems, which require new approaches capable of dealing with the increased decentralization and complexity. Such approaches rely on game-theoretic models and mechanisms to analyze strategic decisions in competitive settings. More specifically, a coalitional game can encourage participants to trade energy with one another and obtain fair and sustainable outcomes. Therefore, the contents of this work address the coalitional game for sustainable energy trading, as well as the challenges associated with its application in power systems. This is achieved by identifying literature works that successfully implemented coalitional games in energy trading and management applications while providing an overview of solution concepts and discussing their properties and contributions to sustainability. Moreover, this work also proposes conditions that peer-to-peer energy trading should satisfy to be considered sustainable. Finally, a case study is presented to demonstrate how a coalitional game and various solution concepts can be successfully implemented to ensure the benefits and stability of cooperation in power systems. The weighted Shapley value is proposed to allocate profits among communities according to their level of sustainability.

Suggested Citation

  • Filipe Bandeiras & Álvaro Gomes & Mário Gomes & Paulo Coelho, 2023. "Application and Challenges of Coalitional Game Theory in Power Systems for Sustainable Energy Trading Communities," Energies, MDPI, vol. 16(24), pages 1-42, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8115-:d:1301908
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/8115/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/8115/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luo, Chunlin & Zhou, Xiaoyang & Lev, Benjamin, 2022. "Core, shapley value, nucleolus and nash bargaining solution: A Survey of recent developments and applications in operations management," Omega, Elsevier, vol. 110(C).
    2. Kjell Hausken & Matthias Mohr, 2001. "The value of a player in n-person games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 18(3), pages 465-483.
    3. Erol, Özge & Başaran Filik, Ümmühan, 2022. "A Stackelberg game approach for energy sharing management of a microgrid providing flexibility to entities," Applied Energy, Elsevier, vol. 316(C).
    4. Chun, Youngsub, 1991. "On the Symmetric and Weighted Shapley Values," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(2), pages 183-190.
    5. Robert P. Gilles, 2010. "The Cooperative Game Theory of Networks and Hierarchies," Theory and Decision Library C, Springer, number 978-3-642-05282-8, December.
    6. van den Brink, Rene, 2007. "Null or nullifying players: The difference between the Shapley value and equal division solutions," Journal of Economic Theory, Elsevier, vol. 136(1), pages 767-775, September.
    7. Aviad Navon & Gefen Ben Yosef & Ram Machlev & Shmuel Shapira & Nilanjan Roy Chowdhury & Juri Belikov & Ariel Orda & Yoash Levron, 2020. "Applications of Game Theory to Design and Operation of Modern Power Systems: A Comprehensive Review," Energies, MDPI, vol. 13(15), pages 1-35, August.
    8. Tushar, Wayes & Saha, Tapan Kumar & Yuen, Chau & Morstyn, Thomas & McCulloch, Malcolm D. & Poor, H. Vincent & Wood, Kristin L., 2019. "A motivational game-theoretic approach for peer-to-peer energy trading in the smart grid," Applied Energy, Elsevier, vol. 243(C), pages 10-20.
    9. Zheng, Boshen & Wei, Wei & Chen, Yue & Wu, Qiuwei & Mei, Shengwei, 2022. "A peer-to-peer energy trading market embedded with residential shared energy storage units," Applied Energy, Elsevier, vol. 308(C).
    10. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Banez-Chicharro, Fernando & Olmos, Luis & Ramos, Andres & Latorre, Jesus M., 2017. "Beneficiaries of transmission expansion projects of an expansion plan: An Aumann-Shapley approach," Applied Energy, Elsevier, vol. 195(C), pages 382-401.
    12. Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).
    13. Tushar, Wayes & Saha, Tapan Kumar & Yuen, Chau & Azim, M. Imran & Morstyn, Thomas & Poor, H. Vincent & Niyato, Dustin & Bean, Richard, 2020. "A coalition formation game framework for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 261(C).
    14. Du, Yan & Wang, Zhiwei & Liu, Guangyi & Chen, Xi & Yuan, Haoyu & Wei, Yanli & Li, Fangxing, 2018. "A cooperative game approach for coordinating multi-microgrid operation within distribution systems," Applied Energy, Elsevier, vol. 222(C), pages 383-395.
    15. Guajardo, Mario & Jörnsten, Kurt, 2015. "Common mistakes in computing the nucleolus," European Journal of Operational Research, Elsevier, vol. 241(3), pages 931-935.
    16. Lozano, S. & Moreno, P. & Adenso-Díaz, B. & Algaba, E., 2013. "Cooperative game theory approach to allocating benefits of horizontal cooperation," European Journal of Operational Research, Elsevier, vol. 229(2), pages 444-452.
    17. Zhong, Xiaoqing & Zhong, Weifeng & Liu, Yi & Yang, Chao & Xie, Shengli, 2023. "A communication-efficient coalition graph game-based framework for electricity and carbon trading in networked energy hubs," Applied Energy, Elsevier, vol. 329(C).
    18. Nowak, A.S. & Radzik, T., 1995. "On axiomatizations of the weighted Shapley values," Games and Economic Behavior, Elsevier, vol. 8(2), pages 389-405.
    19. Zhang, Chenghua & Wu, Jianzhong & Zhou, Yue & Cheng, Meng & Long, Chao, 2018. "Peer-to-Peer energy trading in a Microgrid," Applied Energy, Elsevier, vol. 220(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Churkin, Andrey & Bialek, Janusz & Pozo, David & Sauma, Enzo & Korgin, Nikolay, 2021. "Review of Cooperative Game Theory applications in power system expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Mario Guajardo & Kurt Jörnsten & Mikael Rönnqvist, 2016. "Constructive and blocking power in collaborative transportation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 25-50, January.
    4. Casajus, André & Huettner, Frank, 2014. "Weakly monotonic solutions for cooperative games," Journal of Economic Theory, Elsevier, vol. 154(C), pages 162-172.
    5. Chen, Yang & Park, Byungkwon & Kou, Xiao & Hu, Mengqi & Dong, Jin & Li, Fangxing & Amasyali, Kadir & Olama, Mohammed, 2020. "A comparison study on trading behavior and profit distribution in local energy transaction games," Applied Energy, Elsevier, vol. 280(C).
    6. García-Muñoz, Fernando & Dávila, Sebastián & Quezada, Franco, 2023. "A Benders decomposition approach for solving a two-stage local energy market problem under uncertainty," Applied Energy, Elsevier, vol. 329(C).
    7. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    8. Chen, Liudong & Liu, Nian & Li, Chenchen & Zhang, Silu & Yan, Xiaohe, 2021. "Peer-to-peer energy sharing with dynamic network structures," Applied Energy, Elsevier, vol. 291(C).
    9. Gan, Wei & Yan, Mingyu & Yao, Wei & Wen, Jinyu, 2021. "Peer to peer transactive energy for multiple energy hub with the penetration of high-level renewable energy," Applied Energy, Elsevier, vol. 295(C).
    10. Siripha Junlakarn & Phimsupha Kokchang & Kulyos Audomvongseree, 2022. "Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand," Energies, MDPI, vol. 15(3), pages 1-25, February.
    11. Calleja, Pere & Llerena Garrés, Francesc, 2016. "Consistency distinguishes the (weighted) Shapley value, the (weighted) surplus division value and the prenucleolus," Working Papers 2072/266577, Universitat Rovira i Virgili, Department of Economics.
    12. Filipe Bandeiras & Álvaro Gomes & Mário Gomes & Paulo Coelho, 2023. "Exploring Energy Trading Markets in Smart Grid and Microgrid Systems and Their Implications for Sustainability in Smart Cities," Energies, MDPI, vol. 16(2), pages 1-41, January.
    13. Shama Naz Islam, 2024. "A Review of Peer-to-Peer Energy Trading Markets: Enabling Models and Technologies," Energies, MDPI, vol. 17(7), pages 1-18, April.
    14. Zhou, Yue & Wu, Jianzhong & Song, Guanyu & Long, Chao, 2020. "Framework design and optimal bidding strategy for ancillary service provision from a peer-to-peer energy trading community," Applied Energy, Elsevier, vol. 278(C).
    15. Karami, Mahdi & Madlener, Reinhard, 2022. "Business models for peer-to-peer energy trading in Germany based on households’ beliefs and preferences," Applied Energy, Elsevier, vol. 306(PB).
    16. Christoph Weissbart, 2018. "Decarbonization of Power Markets under Stability and Fairness: Do They Influence Efficiency?," ifo Working Paper Series 270, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    17. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    18. Li, Wenzhong & Xu, Genjiu & van den Brink, René, 2024. "Sign properties and axiomatizations of the weighted division values," Journal of Mathematical Economics, Elsevier, vol. 112(C).
    19. Zheng, Boshen & Wei, Wei & Chen, Yue & Wu, Qiuwei & Mei, Shengwei, 2022. "A peer-to-peer energy trading market embedded with residential shared energy storage units," Applied Energy, Elsevier, vol. 308(C).
    20. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8115-:d:1301908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.