IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7860-d1291728.html
   My bibliography  Save this article

Cooling Strategy Optimization of Cylindrical Lithium-Ion Battery Pack via Multi-Counter Cooling Channels

Author

Listed:
  • Hyeonchang Jeon

    (Department of Mechanical Engineering, Graduate School of Kongju National University, 1223-24, Cheonan-daero, Seobuk-gu, Cheonan-si 31080, Republic of Korea)

  • Seokmoo Hong

    (Department of Future Automotive Engineering, Kongju National University, 1223-24, Cheonan-daero, Seobuk-gu, Cheonan-si 31080, Republic of Korea)

  • Jinwon Yun

    (Department of Energy and Mineral Resources Engineering, Dong-A University, 37, Nakdong-daero 550beon-gil, Saha-gu, Busan 49315, Republic of Korea)

  • Jaeyoung Han

    (Department of Future Automotive Engineering, Kongju National University, 1223-24, Cheonan-daero, Seobuk-gu, Cheonan-si 31080, Republic of Korea
    Institute of Green Car Technology, Kongju National University, 1223-24, Cheonan-daero, Seobuk-gu, Cheonan-si 31080, Republic of Korea)

Abstract

This study focused on the design of a battery pack cooling channel based on a Tesla Model S electric car. This study aimed to achieve a balance between cooling efficiency and pressure drop while maintaining safe and optimal operating temperatures for the batteries. A cooling channel design similar to the basic type employed in the Tesla Model S using 448 cylindrical Li-ion batteries was considered. Consequently, important parameters, such as the maximum temperature and temperature difference in the battery cells in a module, as well as the pressure drop of the coolant, were analyzed. In addition, the characteristics of the temperature changes in each cooling channel shape were investigated. The temperature limit for the battery in a module and the temperature limit difference were set to 40 °C and 5 °C, respectively, to evaluate the performance of the cooling system. Further, the effects of discharge rates (3C and 5C), cooling channel shapes (counter flow and parallel types), and coolant inlet velocities (0.1, 0.2, 0.3, and 0.4 m/s) on battery thermal management were analyzed. The results revealed that the parallel type channel yielded a lower pressure drop than the basic type channel; however, it was not as effective in removing heat from the battery. In contrast, the counter flow type channel effectively removed heat from the batteries with a higher coolant pressure drop in the channel. Therefore, a multi-counter flow type cooling channel combining the advantages of both these channels was proposed to decrease the pressure drop while maintaining appropriate operating temperatures for the battery module. The proposed cooling channel exhibited an excellent cooling performance with lower power consumption and better heat transfer characteristics. However, relatively minimal differences were confirmed for the maximum temperature and temperature difference in the battery module compared with the counter flow type. Therefore, the proposed cooling channel type can be implemented to ensure the optimal temperature operation of the battery module and to decrease system power consumption.

Suggested Citation

  • Hyeonchang Jeon & Seokmoo Hong & Jinwon Yun & Jaeyoung Han, 2023. "Cooling Strategy Optimization of Cylindrical Lithium-Ion Battery Pack via Multi-Counter Cooling Channels," Energies, MDPI, vol. 16(23), pages 1-30, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7860-:d:1291728
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7860/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7860/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shan, Shuai & Li, Li & Xu, Qiang & Ling, Lei & Xie, Yajun & Wang, Hongkang & Zheng, Keqing & Zhang, Lanchun & Bei, Shaoyi, 2023. "Numerical investigation of a compact and lightweight thermal management system with axially mounted cooling tubes for cylindrical lithium-ion battery module," Energy, Elsevier, vol. 274(C).
    2. Coleman, Brittany & Ostanek, Jason & Heinzel, John, 2016. "Reducing cell-to-cell spacing for large-format lithium ion battery modules with aluminum or PCM heat sinks under failure conditions," Applied Energy, Elsevier, vol. 180(C), pages 14-26.
    3. Mathieu, Romain & Briat, Olivier & Gyan, Philippe & Vinassa, Jean-Michel, 2021. "Comparison of the impact of fast charging on the cycle life of three lithium-ion cells under several parameters of charge protocol and temperatures," Applied Energy, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    2. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Chen, Wanying & Gong, Yeming & Chen, Qi & Wang, Hongwei, 2024. "Does battery management matter? Performance evaluation and operating policies in a self-climbing robotic warehouse," European Journal of Operational Research, Elsevier, vol. 312(1), pages 164-181.
    4. Fan, Zhaohui & Fu, Yijie & Liang, Hong & Gao, Renjing & Liu, Shutian, 2023. "A module-level charging optimization method of lithium-ion battery considering temperature gradient effect of liquid cooling and charging time," Energy, Elsevier, vol. 265(C).
    5. Tao, Laifa & Cheng, Yujie & Lu, Chen & Su, Yuzhuan & Chong, Jin & Jin, Haizu & Lin, Yongshou & Noktehdan, Azadeh, 2017. "Lithium-ion battery capacity fading dynamics modelling for formulation optimization: A stochastic approach to accelerate the design process," Applied Energy, Elsevier, vol. 202(C), pages 138-152.
    6. Li, Shen & Marzook, Mohamed Waseem & Zhang, Cheng & Offer, Gregory J. & Marinescu, Monica, 2023. "How to enable large format 4680 cylindrical lithium-ion batteries," Applied Energy, Elsevier, vol. 349(C).
    7. De Vita, Armando & Maheshwari, Arpit & Destro, Matteo & Santarelli, Massimo & Carello, Massimiliana, 2017. "Transient thermal analysis of a lithium-ion battery pack comparing different cooling solutions for automotive applications," Applied Energy, Elsevier, vol. 206(C), pages 101-112.
    8. Milián, Yanio E. & Gutiérrez, Andrea & Grágeda, Mario & Ushak, Svetlana, 2017. "A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 983-999.
    9. Lin, Shao & Ling, Ziye & Li, Suimin & Cai, Chuyue & Zhang, Zhengguo & Fang, Xiaoming, 2023. "Mitigation of lithium-ion battery thermal runaway and inhibition of thermal runaway propagation using inorganic salt hydrate with integrated latent heat and thermochemical storage," Energy, Elsevier, vol. 266(C).
    10. Liu, Qian & Liu, Yingying & Zhang, Mingjie & Wang, Shuping & Li, Wenlong & Zhu, Xiaoqing & Ju, Xing & Xu, Chao & Wei, Bin, 2024. "Comprehensive investigation of the electro-thermal performance and heat transfer mechanism of battery system under forced flow immersion cooling," Energy, Elsevier, vol. 298(C).
    11. Jia Guo & Yaqi Li & Kjeld Pedersen & Daniel-Ioan Stroe, 2021. "Lithium-Ion Battery Operation, Degradation, and Aging Mechanism in Electric Vehicles: An Overview," Energies, MDPI, vol. 14(17), pages 1-22, August.
    12. Luca Pugi, 2023. "Synergic Design and Simulation of Battery-Operated Trains on Partially Electrified Lines: A Case Study regarding the Firenze Faenza Line," Energies, MDPI, vol. 17(1), pages 1-17, December.
    13. Sieg, Johannes & Schmid, Alexander U. & Rau, Laura & Gesterkamp, Andreas & Storch, Mathias & Spier, Bernd & Birke, Kai Peter & Sauer, Dirk Uwe, 2022. "Fast-charging capability of lithium-ion cells: Influence of electrode aging and electrolyte consumption," Applied Energy, Elsevier, vol. 305(C).
    14. Shen, Yudong & Wang, Xueyuan & Jiang, Zhao & Luo, Bingyin & Chen, Daidai & Wei, Xuezhe & Dai, Haifeng, 2024. "Online detection of lithium plating onset during constant and multistage constant current fast charging for lithium-ion batteries," Applied Energy, Elsevier, vol. 370(C).
    15. Hyeonchang Jeon & Daeil Hyun & Hyuntae Lee & Seongjin Son & Jaeyoung Han, 2024. "Optimization of Blades and Impellers for Electric Vehicle Centrifugal Pumps via Numerical Analysis," Energies, MDPI, vol. 17(4), pages 1-16, February.
    16. Zhang, Chen & Wang, Hongmin & Wu, Lifeng, 2023. "Life prediction model for lithium-ion battery considering fast-charging protocol," Energy, Elsevier, vol. 263(PE).
    17. Huang, Chu & Zhu, Haixi & Ma, Yinjie & E, Jiaqiang, 2023. "Evaluation of lithium battery immersion thermal management using a novel pentaerythritol ester coolant," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7860-:d:1291728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.