IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7840-d1290414.html
   My bibliography  Save this article

Exhaust Air Recovery System from the Utilisation Stage of Pneumatic System in Double Transmission Double Expansion Approach

Author

Listed:
  • Jan Markowski

    (Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, Av. Mickiewicza 30, 30-059 Krakow, Poland)

  • Dominik Gryboś

    (Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, Av. Mickiewicza 30, 30-059 Krakow, Poland)

  • Jacek Leszczyński

    (Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, Av. Mickiewicza 30, 30-059 Krakow, Poland)

  • Yohiside Suwa

    (Department of Mechanical Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan)

Abstract

Pneumatic machines and systems are highly popular in the automation and mechanisation of production lines in many industry sectors, such as, e.g., food, automotive, production, and packaging. However, the energy efficiency of the pneumatic system is very low at about 10 to 20% The exhaust air from pneumatic machines has high energy, which is considered waste. This study introduces a novel energy recovery machine designed for integration into industrial compressed air systems. The authors describe the potential of the recovery machine within an industrial environment and present a developed exhaust air recovery system which collects exhaust air and converts it into electricity. Comprehensive industrial tests were conducted to evaluate its performance. The results, along with a detailed analysis, are presented, thereby showing there machine’s capabilities in recovering energy from compressed air processes. This research provides valuable insights into the practical implementation and benefits of deploying such energy recovery systems at an industrial scale. The findings demonstrate the machine’s potential to enhance energy efficiency and reduce operational costs in a wide array of industrial applications that are reliant on compressed air.

Suggested Citation

  • Jan Markowski & Dominik Gryboś & Jacek Leszczyński & Yohiside Suwa, 2023. "Exhaust Air Recovery System from the Utilisation Stage of Pneumatic System in Double Transmission Double Expansion Approach," Energies, MDPI, vol. 16(23), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7840-:d:1290414
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7840/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7840/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leszczynski, J.S. & Grybos, D., 2019. "Compensation for the complexity and over-scaling in industrial pneumatic systems by the accumulation and reuse of exhaust air," Applied Energy, Elsevier, vol. 239(C), pages 1130-1141.
    2. Salvatori, Simone & Benedetti, Miriam & Bonfà, Francesca & Introna, Vito & Ubertini, Stefano, 2018. "Inter-sectorial benchmarking of compressed air generation energy performance: Methodology based on real data gathering in large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 217(C), pages 266-280.
    3. Benedetti, Miriam & Bonfa', Francesca & Bertini, Ilaria & Introna, Vito & Ubertini, Stefano, 2018. "Explorative study on Compressed Air Systems’ energy efficiency in production and use: First steps towards the creation of a benchmarking system for large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 227(C), pages 436-448.
    4. Nehler, Therese, 2018. "Linking energy efficiency measures in industrial compressed air systems with non-energy benefits – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 72-87.
    5. Ryszard Dindorf & Jakub Takosoglu & Piotr Wos, 2023. "Review of Compressed Air Receiver Tanks for Improved Energy Efficiency of Various Pneumatic Systems," Energies, MDPI, vol. 16(10), pages 1-37, May.
    6. Leszczynski, J.S. & Grybos, D., 2020. "Sensitivity analysis of Double Transmission Double Expansion (DTDE) systems for assessment of the environmental impact of recovering energy waste in exhaust air from compressed air systems," Applied Energy, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gryboś, Dominik & Młynarczyk, Dorota & Leszczyński, Jacek & Wiciak, Jerzy, 2024. "Mitigation of noise pollution in compressed air installations through the use of an air collection system in the expansion process," Applied Energy, Elsevier, vol. 364(C).
    2. Gryboś, Dominik & Leszczyński, Jacek, 2023. "Exergy analysis of pressure reduction, back pressure and intermittent air supply configuration of utilization/expansion stage in compressed air systems," Energy, Elsevier, vol. 285(C).
    3. Czopek, Dorota & Gryboś, Dominik & Leszczyński, Jacek & Wiciak, Jerzy, 2022. "Identification of energy wastes through sound analysis in compressed air systems," Energy, Elsevier, vol. 239(PB).
    4. Dominik Gryboś & Jacek S. Leszczyński, 2024. "A Review of Energy Overconsumption Reduction Methods in the Utilization Stage in Compressed Air Systems," Energies, MDPI, vol. 17(6), pages 1-22, March.
    5. Leszczynski, J.S. & Grybos, D., 2019. "Compensation for the complexity and over-scaling in industrial pneumatic systems by the accumulation and reuse of exhaust air," Applied Energy, Elsevier, vol. 239(C), pages 1130-1141.
    6. Cabello Eras, Juan José & Sagastume Gutiérrez, Alexis & Sousa Santos, Vladimir & Cabello Ulloa, Mario Javier, 2020. "Energy management of compressed air systems. Assessing the production and use of compressed air in industry," Energy, Elsevier, vol. 213(C).
    7. Zecheng Zhao & Zhiwen Wang & Hu Wang & Hongwei Zhu & Wei Xiong, 2023. "Conventional and Advanced Exergy Analyses of Industrial Pneumatic Systems," Energies, MDPI, vol. 16(16), pages 1-23, August.
    8. Miriam Benedetti & Francesca Bonfà & Vito Introna & Annalisa Santolamazza & Stefano Ubertini, 2019. "Real Time Energy Performance Control for Industrial Compressed Air Systems: Methodology and Applications," Energies, MDPI, vol. 12(20), pages 1-28, October.
    9. Ryszard Dindorf, 2024. "Study of the Energy Efficiency of Compressed Air Storage Tanks," Sustainability, MDPI, vol. 16(4), pages 1-37, February.
    10. Leszczynski, J.S. & Grybos, D., 2020. "Sensitivity analysis of Double Transmission Double Expansion (DTDE) systems for assessment of the environmental impact of recovering energy waste in exhaust air from compressed air systems," Applied Energy, Elsevier, vol. 278(C).
    11. Kalantzis, Fotios & Niczyporuk, Hanna, 2021. "Can European businesses achieve productivity gains from investments in energy efficiency?," EIB Working Papers 2021/07, European Investment Bank (EIB).
    12. Yutong Zhao & Shuang Zeng & Yifeng Ding & Lin Ma & Zhao Wang & Anqi Liang & Hongbo Ren, 2024. "Cost–Benefit Analysis of Distributed Energy Systems Considering the Monetization of Indirect Benefits," Sustainability, MDPI, vol. 16(2), pages 1-14, January.
    13. Fábio de Oliveira Neves & Henrique Ewbank & José Arnaldo Frutuoso Roveda & Andrea Trianni & Fernando Pinhabel Marafão & Sandra Regina Monteiro Masalskiene Roveda, 2022. "Economic and Production-Related Implications for Industrial Energy Efficiency: A Logistic Regression Analysis on Cross-Cutting Technologies," Energies, MDPI, vol. 15(4), pages 1-19, February.
    14. Alessandra Cantini & Leonardo Leoni & Filippo De Carlo & Marcello Salvio & Chiara Martini & Fabrizio Martini, 2021. "Technological Energy Efficiency Improvements in Cement Industries," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    15. Monjurul Hasan, A S M & Trianni, Andrea & Shukla, Nagesh & Katic, Mile, 2022. "A novel characterization based framework to incorporate industrial energy management services," Applied Energy, Elsevier, vol. 313(C).
    16. Paramonova, Svetlana & Nehler, Therese & Thollander, Patrik, 2021. "Technological change or process innovation – An empirical study of implemented energy efficiency measures from a Swedish industrial voluntary agreements program," Energy Policy, Elsevier, vol. 156(C).
    17. Hernan Hernandez-Herrera & Jorge I. Silva-Ortega & Vicente Leonel Mart nez Diaz & Zaid Garc a Sanchez & Gilberto Gonz lez Garc a & Sandra M. Escorcia & Habid E. Zarate, 2020. "Energy Savings Measures in Compressed Air Systems," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 414-422.
    18. Ryszard Dindorf & Jakub Takosoglu & Piotr Wos, 2023. "Review of Compressed Air Receiver Tanks for Improved Energy Efficiency of Various Pneumatic Systems," Energies, MDPI, vol. 16(10), pages 1-37, May.
    19. Nel, A.J.H. & Vosloo, J.C. & Mathews, M.J., 2018. "Financial model for energy efficiency projects in the mining industry," Energy, Elsevier, vol. 163(C), pages 546-554.
    20. Zhan, Changfeng & Yin, Yonggao & Jin, Xing & Zhang, Xiaosong, 2018. "Experimental and simulated study on a novel compressed air drying system using a liquid desiccant cycle," Energy, Elsevier, vol. 162(C), pages 60-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7840-:d:1290414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.