Mitigation of noise pollution in compressed air installations through the use of an air collection system in the expansion process
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.123158
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Kang & Zhou, Xuejin & Tu, Ran & Xie, Qiyuan & Jiang, Xi, 2014. "The flow and heat transfer characteristics of supercritical CO2 leakage from a pipeline," Energy, Elsevier, vol. 71(C), pages 665-672.
- Cabello Eras, Juan José & Sagastume Gutiérrez, Alexis & Sousa Santos, Vladimir & Cabello Ulloa, Mario Javier, 2020. "Energy management of compressed air systems. Assessing the production and use of compressed air in industry," Energy, Elsevier, vol. 213(C).
- Leszczynski, J.S. & Grybos, D., 2019. "Compensation for the complexity and over-scaling in industrial pneumatic systems by the accumulation and reuse of exhaust air," Applied Energy, Elsevier, vol. 239(C), pages 1130-1141.
- Cummins, Joshua J. & Nash, Christopher J. & Thomas, Seth & Justice, Aaron & Mahadevan, Sankaran & Adams, Douglas E. & Barth, Eric J., 2017. "Energy conservation in industrial pneumatics: A state model for predicting energetic savings using a novel pneumatic strain energy accumulator," Applied Energy, Elsevier, vol. 198(C), pages 239-249.
- Vittorini, Diego & Cipollone, Roberto, 2016. "Energy saving potential in existing industrial compressors," Energy, Elsevier, vol. 102(C), pages 502-515.
- Dehra, Himanshu, 2019. "Principles of energy conversion and noise characterization in air ventilation ducts exposed to solar radiation," Applied Energy, Elsevier, vol. 242(C), pages 1320-1345.
- Nehler, Therese, 2018. "Linking energy efficiency measures in industrial compressed air systems with non-energy benefits – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 72-87.
- Salvatori, Simone & Benedetti, Miriam & Bonfà, Francesca & Introna, Vito & Ubertini, Stefano, 2018. "Inter-sectorial benchmarking of compressed air generation energy performance: Methodology based on real data gathering in large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 217(C), pages 266-280.
- Li, Xia & Zhao, Tian & Sun, Qing-Han & Chen, Qun, 2022. "Frequency response function method for dynamic gas flow modeling and its application in pipeline system leakage diagnosis," Applied Energy, Elsevier, vol. 324(C).
- Czopek, Dorota & Gryboś, Dominik & Leszczyński, Jacek & Wiciak, Jerzy, 2022. "Identification of energy wastes through sound analysis in compressed air systems," Energy, Elsevier, vol. 239(PB).
- Benedetti, Miriam & Bonfa', Francesca & Bertini, Ilaria & Introna, Vito & Ubertini, Stefano, 2018. "Explorative study on Compressed Air Systems’ energy efficiency in production and use: First steps towards the creation of a benchmarking system for large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 227(C), pages 436-448.
- Leszczynski, J.S. & Grybos, D., 2020. "Sensitivity analysis of Double Transmission Double Expansion (DTDE) systems for assessment of the environmental impact of recovering energy waste in exhaust air from compressed air systems," Applied Energy, Elsevier, vol. 278(C).
- Saidur, R. & Rahim, N.A. & Hasanuzzaman, M., 2010. "A review on compressed-air energy use and energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1135-1153, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gryboś, Dominik & Leszczyński, Jacek, 2023. "Exergy analysis of pressure reduction, back pressure and intermittent air supply configuration of utilization/expansion stage in compressed air systems," Energy, Elsevier, vol. 285(C).
- Czopek, Dorota & Gryboś, Dominik & Leszczyński, Jacek & Wiciak, Jerzy, 2022. "Identification of energy wastes through sound analysis in compressed air systems," Energy, Elsevier, vol. 239(PB).
- Jan Markowski & Dominik Gryboś & Jacek Leszczyński & Yohiside Suwa, 2023. "Exhaust Air Recovery System from the Utilisation Stage of Pneumatic System in Double Transmission Double Expansion Approach," Energies, MDPI, vol. 16(23), pages 1-14, November.
- Leszczynski, J.S. & Grybos, D., 2020. "Sensitivity analysis of Double Transmission Double Expansion (DTDE) systems for assessment of the environmental impact of recovering energy waste in exhaust air from compressed air systems," Applied Energy, Elsevier, vol. 278(C).
- Leszczynski, J.S. & Grybos, D., 2019. "Compensation for the complexity and over-scaling in industrial pneumatic systems by the accumulation and reuse of exhaust air," Applied Energy, Elsevier, vol. 239(C), pages 1130-1141.
- Cabello Eras, Juan José & Sagastume Gutiérrez, Alexis & Sousa Santos, Vladimir & Cabello Ulloa, Mario Javier, 2020. "Energy management of compressed air systems. Assessing the production and use of compressed air in industry," Energy, Elsevier, vol. 213(C).
- Dominik Gryboś & Jacek S. Leszczyński, 2024. "A Review of Energy Overconsumption Reduction Methods in the Utilization Stage in Compressed Air Systems," Energies, MDPI, vol. 17(6), pages 1-22, March.
- Hernan Hernandez-Herrera & Jorge I. Silva-Ortega & Vicente Leonel Mart nez Diaz & Zaid Garc a Sanchez & Gilberto Gonz lez Garc a & Sandra M. Escorcia & Habid E. Zarate, 2020. "Energy Savings Measures in Compressed Air Systems," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 414-422.
- Andrea Trianni & Davide Accordini & Enrico Cagno, 2020. "Identification and Categorization of Factors Affecting the Adoption of Energy Efficiency Measures within Compressed Air Systems," Energies, MDPI, vol. 13(19), pages 1-51, October.
- Massimo Borg & Paul Refalo & Emmanuel Francalanza, 2023. "Failure Detection Techniques on the Demand Side of Smart and Sustainable Compressed Air Systems: A Systematic Review," Energies, MDPI, vol. 16(7), pages 1-36, March.
- Fábio de Oliveira Neves & Henrique Ewbank & José Arnaldo Frutuoso Roveda & Andrea Trianni & Fernando Pinhabel Marafão & Sandra Regina Monteiro Masalskiene Roveda, 2022. "Economic and Production-Related Implications for Industrial Energy Efficiency: A Logistic Regression Analysis on Cross-Cutting Technologies," Energies, MDPI, vol. 15(4), pages 1-19, February.
- Nel, A.J.H. & Vosloo, J.C. & Mathews, M.J., 2018. "Financial model for energy efficiency projects in the mining industry," Energy, Elsevier, vol. 163(C), pages 546-554.
- Zhan, Changfeng & Yin, Yonggao & Jin, Xing & Zhang, Xiaosong, 2018. "Experimental and simulated study on a novel compressed air drying system using a liquid desiccant cycle," Energy, Elsevier, vol. 162(C), pages 60-71.
- Benedetti, Miriam & Bonfa', Francesca & Bertini, Ilaria & Introna, Vito & Ubertini, Stefano, 2018. "Explorative study on Compressed Air Systems’ energy efficiency in production and use: First steps towards the creation of a benchmarking system for large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 227(C), pages 436-448.
- Zhang, Yongyu & Gao, Ran & Si, Pengfei & Shi, Lijun & Shang, Yinghui & Wang, Yi & Liu, Boran & Du, Xueqing & Zhao, Kejie & Li, Angui, 2023. "Study on performances of heat-oxygen coupling device for high-altitude environments," Energy, Elsevier, vol. 272(C).
- Hongwang Du & Wei Liu & Xin Bian & Wei Xiong, 2022. "Energy-Saving for Industrial Pneumatic Actuation Systems by Exhausted Air Reuse Based on a Constant Pressure Elastic Accumulator," Sustainability, MDPI, vol. 14(6), pages 1-13, March.
- Doner, Nimeti & Ciddi, Kerem, 2022. "Regression analysis of the operational parameters and energy-saving potential of industrial compressed air systems," Energy, Elsevier, vol. 252(C).
- Zecheng Zhao & Zhiwen Wang & Hu Wang & Hongwei Zhu & Wei Xiong, 2023. "Conventional and Advanced Exergy Analyses of Industrial Pneumatic Systems," Energies, MDPI, vol. 16(16), pages 1-23, August.
- Miriam Benedetti & Francesca Bonfà & Vito Introna & Annalisa Santolamazza & Stefano Ubertini, 2019. "Real Time Energy Performance Control for Industrial Compressed Air Systems: Methodology and Applications," Energies, MDPI, vol. 12(20), pages 1-28, October.
- Chen, Lei & Hu, Yanwei & Yang, Kai & Yan, Xinqing & Yu, Shuai & Yu, Jianliang & Chen, Shaoyun, 2023. "Fracture process characteristic study during fracture propagation of a CO2 transport network distribution pipeline," Energy, Elsevier, vol. 283(C).
More about this item
Keywords
Pneumatic system; Compressed air; Pneumatic tool; Mechanical characteristic; Pneumatic noise; SPL measurement; Acoustic characteristic;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005415. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.