IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7741-d1286597.html
   My bibliography  Save this article

Empowering Low-Income Communities with Sustainable Decentralized Renewable Energy-Based Mini-Grids

Author

Listed:
  • Kofi Nyarko

    (Department of Energy Systems Engineering, Faculty of Engineering, Koforidua Technical University, Koforidua P.O. Box KF 981, Ghana
    Discipline of Engineering and Energy, Murdoch University, Murdoch, WA 6150, Australia)

  • Jonathan Whale

    (Discipline of Engineering and Energy, Murdoch University, Murdoch, WA 6150, Australia)

  • Tania Urmee

    (Discipline of Engineering and Energy, Murdoch University, Murdoch, WA 6150, Australia)

Abstract

With less than seven years before the UN’s Sustainable Development Goals deadline, the race is on to achieve universal access to affordable, reliable and modern energy services in low-income communities in developing countries. These communities are mostly distant from central grids and economically suitable for off-grid mini-grid systems. Data suggest that these mini-grids are not sustained and often fail after a few years of operation. The authors investigated the challenges of an existing mini-grid system in Ghana and proposed measures to overcome them. Field surveys with expert stakeholders and users of the system were conducted to examine the challenges. The results showed that 98% of the residents use power for domestic purposes. The inability to pay for the power consumed was the highest-ranked challenge the users faced followed by power quality issues. From the expert stakeholders’ perspectives, economic challenges were the most significant barriers with a mean score range of 3.92 to 4.73 on a 1–5 Likert scale, followed by political challenges. The researchers propose that implementers must optimize non-hardware costs and promote local component manufacturing to address these economic challenges. In addition, we suggest that the government review the government-driven policy and involve the private sector.

Suggested Citation

  • Kofi Nyarko & Jonathan Whale & Tania Urmee, 2023. "Empowering Low-Income Communities with Sustainable Decentralized Renewable Energy-Based Mini-Grids," Energies, MDPI, vol. 16(23), pages 1-31, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7741-:d:1286597
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7741/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7741/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcin Cholewa & Farid Mammadov & Agnieszka Nowaczek, 2022. "The obstacles and challenges of transition towards a renewable and sustainable energy system in Azerbaijan and Poland," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(1), pages 155-169, March.
    2. Asante, Dennis & He, Zheng & Adjei, Nana Osae & Asante, Bismark, 2020. "Exploring the barriers to renewable energy adoption utilising MULTIMOORA- EDAS method," Energy Policy, Elsevier, vol. 142(C).
    3. Satya Widya Yudha & Benny Tjahjono, 2019. "Stakeholder Mapping and Analysis of the Renewable Energy Industry in Indonesia," Energies, MDPI, vol. 12(4), pages 1-19, February.
    4. Azimoh, Chukwuma Leonard & Klintenberg, Patrik & Mbohwa, Charles & Wallin, Fredrik, 2017. "Replicability and scalability of mini-grid solution to rural electrification programs in sub-Saharan Africa," Renewable Energy, Elsevier, vol. 106(C), pages 222-231.
    5. Eva Segura & Lidia M. Belmonte & Rafael Morales & José A. Somolinos, 2023. "A Strategic Analysis of Photovoltaic Energy Projects: The Case Study of Spain," Sustainability, MDPI, vol. 15(16), pages 1-37, August.
    6. Duran, Asligul Serasu & Sahinyazan, Feyza G., 2021. "An analysis of renewable mini-grid projects for rural electrification," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    7. Mathilde Brix Pedersen, 2016. "Deconstructing the concept of renewable energy-based mini-grids for rural electrification in East Africa," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(5), pages 570-587, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    3. Alexander Vallejo Díaz & Idalberto Herrera Moya & Edwin Garabitos Lara & Cándida K. Casilla Victorino, 2024. "Assessment of Urban Wind Potential and the Stakeholders Involved in Energy Decision-Making," Sustainability, MDPI, vol. 16(4), pages 1-20, February.
    4. Hossein Yousefi & Mohammad Hasan Ghodusinejad & Armin Ghodrati, 2022. "Multi-Criteria Future Energy System Planning and Analysis for Hot Arid Areas of Iran," Energies, MDPI, vol. 15(24), pages 1-25, December.
    5. Olivia Muza & Ramit Debnath, 2020. "Socially inclusive renewable energy transition in sub-Saharan Africa: A social shaping of technology analysis of appliance uptake in Rwanda," Working Papers EPRG2017, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    6. Xu-Hui Li & Lin Huang & Qiang Li & Hu-Chen Liu, 2020. "Passenger Satisfaction Evaluation of Public Transportation Using Pythagorean Fuzzy MULTIMOORA Method under Large Group Environment," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    7. Pereira, Géssica Michelle dos Santos & Weigert, Gabriela Rosalee & Macedo, Pablo Lopes & Silva, Kiane Alves e & Segura Salas, Cresencio Silvio & Gonçalves, Antônio Maurício de Matos & Nascimento, Hebe, 2022. "Quasi-dynamic operation and maintenance plan for photovoltaic systems in remote areas: The framework of Pantanal-MS," Renewable Energy, Elsevier, vol. 181(C), pages 404-416.
    8. Zapata, Oscar, 2022. "Renewable Energy and Community Development," OSF Preprints tk59y, Center for Open Science.
    9. Cantoni, Roberto & Skræp Svenningsen, Lea & Sanfo, Safiétou, 2021. "Unattainable proximity: Solar power and peri-urbanity in central Burkina Faso," Energy Policy, Elsevier, vol. 150(C).
    10. Shahriyar Nasirov & Paula Gonzalez & Jose Opazo & Carlos Silva, 2023. "Development of Rooftop Solar under Netbilling in Chile: Analysis of Main Barriers from Project Developers’ Perspectives," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    11. Abdul Munim Rehmani & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Muhammad Awais, 2023. "Techno-Economic-Environmental Assessment of an Isolated Rural Micro-Grid from a Mid-Career Repowering Perspective," Sustainability, MDPI, vol. 15(3), pages 1-35, January.
    12. Satya Widya Yudha & Benny Tjahjono & Philip Longhurst, 2021. "Stakeholders’ Recount on the Dynamics of Indonesia’s Renewable Energy Sector," Energies, MDPI, vol. 14(10), pages 1-19, May.
    13. Meisheng He & Habib Forootan Fard & Khalid Yahya & Mahmoud Mohamed & Ibrahim Alhamrouni & Lilik Jamilatul Awalin, 2023. "Optimal Design of Hybrid Renewable Systems, Including Grid, PV, Bio Generator, Diesel Generator, and Battery," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    14. Hafidz Wibisono & Jon C. Lovett & Dhimas Bayu Anindito, 2023. "The contestation of ideas behind Indonesia's rural electrification policies: The influence of global and national institutional dynamics," Development Policy Review, Overseas Development Institute, vol. 41(1), January.
    15. Warren S. Vaz, 2020. "Multiobjective Optimization of a Residential Grid-Tied Solar System," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    16. Oryani, Bahareh & Koo, Yoonmo & Rezania, Shahabaldin & Shafiee, Afsaneh, 2021. "Barriers to renewable energy technologies penetration: Perspective in Iran," Renewable Energy, Elsevier, vol. 174(C), pages 971-983.
    17. Shirley Thompson, 2023. "Strategic Analysis of the Renewable Electricity Transition: Power to the World without Carbon Emissions?," Energies, MDPI, vol. 16(17), pages 1-34, August.
    18. Olimpia-Iuliana Ban & Simona Dzitac & Attila Simó & Adrian Florea, 2023. "Romania Residents’ Attitude Investigation toward the Transition to Renewable Energy Sources through Importance-Performance Analysis," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    19. Kamali Saraji, Mahyar & Aliasgari, Elahe & Streimikiene, Dalia, 2023. "Assessment of the challenges to renewable energy technologies adoption in rural areas: A Fermatean CRITIC-VIKOR approach," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    20. Mariana Losada-Agudelo & Sebastian Souyris, 2024. "Sustainable Operations Management in the Energy Sector: A Comprehensive Review of the Literature from 2000 to 2024," Sustainability, MDPI, vol. 16(18), pages 1-33, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7741-:d:1286597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.