IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7677-d1284086.html
   My bibliography  Save this article

Evaluation Method for Hosting Capacity of Rooftop Photovoltaic Considering Photovoltaic Potential in Distribution System

Author

Listed:
  • Yilin Xu

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Jie He

    (Shantou Power Supply Bureau of Guangdong Power Grid Corporation, Shantou 515041, China)

  • Yang Liu

    (Shantou Power Supply Bureau of Guangdong Power Grid Corporation, Shantou 515041, China)

  • Zilu Li

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Weicong Cai

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Xiangang Peng

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

Abstract

Regarding the existing evaluation methods for photovoltaic (PV) hosting capacity in the distribution system that do not consider the spatial distribution of rooftop photovoltaic potential and are difficult to apply on the actual large-scale distribution systems, this paper proposes a PV hosting capacity evaluation method based on the improved PSPNet, grid multi-source data, and the CRITIC method. Firstly, an improved PSPNet is used to efficiently abstract the rooftop in satellite map images and then estimate the rooftop PV potential of each distribution substation supply area. Considering the safety, economy, and flexibility of distribution system operation, we establish a multi-level PV hosting capacity evaluation system. Finally, based on the rooftop PV potential estimation of each distribution substation supply area, we combine the multi-source data of the grid digitalization system to carry out security verification and indicator calculation and convert the indicator calculation results of each scenario into a comprehensive score through the CRITIC method. We estimate the rooftop photovoltaic potential and evaluate the PV hosting capacity of an actual 10 kV distribution system in Shantou, China. The results show that the improved PSPNet solves the hole problem of the original model and obtains a close-to-realistic rooftop photovoltaic potential estimation value. In addition, the proposed method considering the photovoltaic potential in this paper can more accurately evaluate the rooftop PV hosting capacity of the distribution system compared with the traditional method, which provides data support for the power grid corporation to formulate a reasonable PV development and hosting capacity enhancement program.

Suggested Citation

  • Yilin Xu & Jie He & Yang Liu & Zilu Li & Weicong Cai & Xiangang Peng, 2023. "Evaluation Method for Hosting Capacity of Rooftop Photovoltaic Considering Photovoltaic Potential in Distribution System," Energies, MDPI, vol. 16(22), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7677-:d:1284086
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7677/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7677/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miha Grabner & Andrej Souvent & Nermin Suljanović & Andrej Košir & Boštjan Blažič, 2019. "Probabilistic Methodology for Calculating PV Hosting Capacity in LV Networks Using Actual Building Roof Data," Energies, MDPI, vol. 12(21), pages 1-15, October.
    2. Zhong, Teng & Zhang, Zhixin & Chen, Min & Zhang, Kai & Zhou, Zixuan & Zhu, Rui & Wang, Yijie & Lü, Guonian & Yan, Jinyue, 2021. "A city-scale estimation of rooftop solar photovoltaic potential based on deep learning," Applied Energy, Elsevier, vol. 298(C).
    3. Walch, Alina & Castello, Roberto & Mohajeri, Nahid & Scartezzini, Jean-Louis, 2020. "Big data mining for the estimation of hourly rooftop photovoltaic potential and its uncertainty," Applied Energy, Elsevier, vol. 262(C).
    4. Ammar Arshad & Martin Lindner & Matti Lehtonen, 2017. "An Analysis of Photo-Voltaic Hosting Capacity in Finnish Low Voltage Distribution Networks," Energies, MDPI, vol. 10(11), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jiang & Wu, Qifeng & Lin, Zhipeng & Shi, Huijie & Wen, Shaoyang & Wu, Qiaoyu & Zhang, Junxue & Peng, Changhai, 2023. "A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS," Energy, Elsevier, vol. 282(C).
    2. Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    3. Samar Fatima & Verner Püvi & Matti Lehtonen, 2020. "Review on the PV Hosting Capacity in Distribution Networks," Energies, MDPI, vol. 13(18), pages 1-34, September.
    4. Gupta, Rahul & Sossan, Fabrizio & Paolone, Mario, 2021. "Countrywide PV hosting capacity and energy storage requirements for distribution networks: The case of Switzerland," Applied Energy, Elsevier, vol. 281(C).
    5. Žalik, Mitja & Mongus, Domen & Lukač, Niko, 2024. "High-resolution spatiotemporal assessment of solar potential from remote sensing data using deep learning," Renewable Energy, Elsevier, vol. 222(C).
    6. Molnár, Gergely & Cabeza, Luisa F. & Chatterjee, Souran & Ürge-Vorsatz, Diana, 2024. "Modelling the building-related photovoltaic power production potential in the light of the EU's Solar Rooftop Initiative," Applied Energy, Elsevier, vol. 360(C).
    7. Tian, Xinyi & Wang, Jun & Yuan, Shuang & Ji, Jie & Ke, Wei & Wang, Chuyao, 2023. "Investigation on the electrical performance of a curved PV roof integrated with CIGS cells for traditional Chinese houses," Energy, Elsevier, vol. 263(PC).
    8. Xinghua Wang & Fucheng Zhong & Yilin Xu & Xixian Liu & Zezhong Li & Jianan Liu & Zhuoli Zhao, 2023. "Extraction and Joint Method of PV–Load Typical Scenes Considering Temporal and Spatial Distribution Characteristics," Energies, MDPI, vol. 16(18), pages 1-19, September.
    9. Zhixin Zhang & Min Chen & Teng Zhong & Rui Zhu & Zhen Qian & Fan Zhang & Yue Yang & Kai Zhang & Paolo Santi & Kaicun Wang & Yingxia Pu & Lixin Tian & Guonian Lü & Jinyue Yan, 2023. "Carbon mitigation potential afforded by rooftop photovoltaic in China," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Jiang, Hou & Yao, Ling & Lu, Ning & Qin, Jun & Zhang, Xiaotong & Liu, Tang & Zhang, Xingxing & Zhou, Chenghu, 2024. "Exploring the optimization of rooftop photovoltaic scale and spatial layout under curtailment constraints," Energy, Elsevier, vol. 293(C).
    11. Jiang, Hou & Zhang, Xiaotong & Yao, Ling & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2023. "High-resolution analysis of rooftop photovoltaic potential based on hourly generation simulations and load profiles," Applied Energy, Elsevier, vol. 348(C).
    12. Müller, Jonas & Trutnevyte, Evelina, 2020. "Spatial projections of solar PV installations at subnational level: Accuracy testing of regression models," Applied Energy, Elsevier, vol. 265(C).
    13. Isaac Gallardo & Daniel Amor & Álvaro Gutiérrez, 2023. "Recent Trends in Real-Time Photovoltaic Prediction Systems," Energies, MDPI, vol. 16(15), pages 1-17, July.
    14. Samar Fatima & Verner Püvi & Ammar Arshad & Mahdi Pourakbari-Kasmaei & Matti Lehtonen, 2021. "Comparison of Economical and Technical Photovoltaic Hosting Capacity Limits in Distribution Networks," Energies, MDPI, vol. 14(9), pages 1-23, April.
    15. Lonergan, Katherine Emma & Sansavini, Giovanni, 2022. "Business structure of electricity distribution system operator and effect on solar photovoltaic uptake: An empirical case study for Switzerland," Energy Policy, Elsevier, vol. 160(C).
    16. V. Tirupati Rao & Y. Raja Sekhar, 2023. "Hybrid Photovoltaic/Thermal (PVT) Collector Systems With Different Absorber Configurations For Thermal Management – A Review," Energy & Environment, , vol. 34(3), pages 690-735, May.
    17. Carlos Beltran-Velamazan & Marta Monzón-Chavarrías & Belinda López-Mesa, 2021. "A Method for the Automated Construction of 3D Models of Cities and Neighborhoods from Official Cadaster Data for Solar Analysis," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    18. Paulius Kozlovas & Saulius Gudzius & Jokubas Ciurlionis & Audrius Jonaitis & Inga Konstantinaviciute & Viktorija Bobinaite, 2023. "Assessment of Technical and Economic Potential of Urban Rooftop Solar Photovoltaic Systems in Lithuania," Energies, MDPI, vol. 16(14), pages 1-29, July.
    19. Wang, Sen & Qin, Chaoxu & Feng, Qihong & Javadpour, Farzam & Rui, Zhenhua, 2021. "A framework for predicting the production performance of unconventional resources using deep learning," Applied Energy, Elsevier, vol. 295(C).
    20. Yu-Jen Liu & Yu-Hsuan Tai & Yih-Der Lee & Jheng-Lung Jiang & Chen-Wei Lin, 2020. "Assessment of PV Hosting Capacity in a Small Distribution System by an Improved Stochastic Analysis Method," Energies, MDPI, vol. 13(22), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7677-:d:1284086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.