IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1702-d116458.html
   My bibliography  Save this article

An Analysis of Photo-Voltaic Hosting Capacity in Finnish Low Voltage Distribution Networks

Author

Listed:
  • Ammar Arshad

    (Department of Electrical Engineering and Automation, Aalto University, Maarintie 8, 02150 Espoo, Finland)

  • Martin Lindner

    (Department of Electrical Engineering and Automation, Aalto University, Maarintie 8, 02150 Espoo, Finland)

  • Matti Lehtonen

    (Department of Electrical Engineering and Automation, Aalto University, Maarintie 8, 02150 Espoo, Finland)

Abstract

The ascending trend of photo-voltaic (PV) utilization on a domestic scale in Finland, calls for a technical aspects review of low voltage (LV) networks. This work investigates the technical factors that limit the PV hosting capacity, in realistic case networks, designed relative to different geographical areas of Finland. A Monte Carlo method based analysis was performed, in order to quantify the hosting capacity of the formulated networks, with balanced and unbalanced feeds, in PV systems and their limiting constraints were evaluated. Finally, the effectiveness of on-load tap changer (OLTC) in increasing the PV penetration, when employed in the LV system, was investigated.

Suggested Citation

  • Ammar Arshad & Martin Lindner & Matti Lehtonen, 2017. "An Analysis of Photo-Voltaic Hosting Capacity in Finnish Low Voltage Distribution Networks," Energies, MDPI, vol. 10(11), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1702-:d:116458
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1702/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1702/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samar Fatima & Verner Püvi & Matti Lehtonen, 2020. "Review on the PV Hosting Capacity in Distribution Networks," Energies, MDPI, vol. 13(18), pages 1-34, September.
    2. Mohammad Seydali Seyf Abad & Jennifer A. Hayward & Saad Sayeef & Peter Osman & Jin Ma, 2021. "Tidal Energy Hosting Capacity in Australia’s Future Energy Mix," Energies, MDPI, vol. 14(5), pages 1-20, March.
    3. Kharrazi, A. & Sreeram, V. & Mishra, Y., 2020. "Assessment techniques of the impact of grid-tied rooftop photovoltaic generation on the power quality of low voltage distribution network - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    4. Chathurangi, D. & Jayatunga, U. & Perera, S., 2022. "Recent investigations on the evaluation of solar PV hosting capacity in LV distribution networks constrained by voltage rise," Renewable Energy, Elsevier, vol. 199(C), pages 11-20.
    5. Gupta, Rahul & Sossan, Fabrizio & Paolone, Mario, 2021. "Countrywide PV hosting capacity and energy storage requirements for distribution networks: The case of Switzerland," Applied Energy, Elsevier, vol. 281(C).
    6. Shaila Arif & Ata E Rabbi & Shams Uddin Ahmed & Molla Shahadat Hossain Lipu & Taskin Jamal & Tareq Aziz & Mahidur R. Sarker & Amna Riaz & Talal Alharbi & Muhammad Majid Hussain, 2022. "Enhancement of Solar PV Hosting Capacity in a Remote Industrial Microgrid: A Methodical Techno-Economic Approach," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    7. Tiago Elias Castelo de Oliveira & Math Bollen & Paulo Fernando Ribeiro & Pedro M. S. de Carvalho & Antônio C. Zambroni & Benedito D. Bonatto, 2019. "The Concept of Dynamic Hosting Capacity for Distributed Energy Resources: Analytics and Practical Considerations," Energies, MDPI, vol. 12(13), pages 1-18, July.
    8. Samar Fatima & Verner Püvi & Matti Lehtonen, 2021. "Comparison of Different References When Assessing PV HC in Distribution Networks," Clean Technol., MDPI, vol. 3(1), pages 1-15, February.
    9. Jibran Ali & Stefano Massucco & Federico Silvestro, 2019. "Aggregation Strategy for Reactive Power Compensation Techniques—Validation," Energies, MDPI, vol. 12(11), pages 1-13, May.
    10. Yu-Jen Liu & Yu-Hsuan Tai & Yih-Der Lee & Jheng-Lung Jiang & Chen-Wei Lin, 2020. "Assessment of PV Hosting Capacity in a Small Distribution System by an Improved Stochastic Analysis Method," Energies, MDPI, vol. 13(22), pages 1-20, November.
    11. Koirala, Arpan & Van Acker, Tom & D’hulst, Reinhilde & Van Hertem, Dirk, 2022. "Hosting capacity of photovoltaic systems in low voltage distribution systems: A benchmark of deterministic and stochastic approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    12. Samar Fatima & Verner Püvi & Ammar Arshad & Mahdi Pourakbari-Kasmaei & Matti Lehtonen, 2021. "Comparison of Economical and Technical Photovoltaic Hosting Capacity Limits in Distribution Networks," Energies, MDPI, vol. 14(9), pages 1-23, April.
    13. Ismael, Sherif M. & Abdel Aleem, Shady H.E. & Abdelaziz, Almoataz Y. & Zobaa, Ahmed F., 2019. "State-of-the-art of hosting capacity in modern power systems with distributed generation," Renewable Energy, Elsevier, vol. 130(C), pages 1002-1020.
    14. Mohammad Seydali Seyf Abad & Jin Ma & Ahmad Shabir Ahmadyar & Hesamoddin Marzooghi, 2018. "Distributionally Robust Distributed Generation Hosting Capacity Assessment in Distribution Systems," Energies, MDPI, vol. 11(11), pages 1-19, November.
    15. Sherif M. Ismael & Shady H. E. Abdel Aleem & Almoataz Y. Abdelaziz & Ahmed F. Zobaa, 2019. "Probabilistic Hosting Capacity Enhancement in Non-Sinusoidal Power Distribution Systems Using a Hybrid PSOGSA Optimization Algorithm," Energies, MDPI, vol. 12(6), pages 1-23, March.
    16. Yilin Xu & Jie He & Yang Liu & Zilu Li & Weicong Cai & Xiangang Peng, 2023. "Evaluation Method for Hosting Capacity of Rooftop Photovoltaic Considering Photovoltaic Potential in Distribution System," Energies, MDPI, vol. 16(22), pages 1-23, November.
    17. Ammar Arshad & Verner Püvi & Matti Lehtonen, 2018. "Monte Carlo-Based Comprehensive Assessment of PV Hosting Capacity and Energy Storage Impact in Realistic Finnish Low-Voltage Networks," Energies, MDPI, vol. 11(6), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1702-:d:116458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.