IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v175y2023ip1s0960077923008676.html
   My bibliography  Save this article

Deep learning in bifurcations of particle trajectories

Author

Listed:
  • Mohseni, Morteza

Abstract

We show that deep learning algorithms can be deployed to study bifurcations of particle trajectories. We demonstrate this for two physical systems, the unperturbed Duffing equation and charged particles in magnetic reversal by using the AI Poincaré algorithm. We solve the equations of motion by using a fourth-order Runge–Kutta method to generate a dataset for each system. We use a deep neural network to train the data. A noise characterized by a noise scale L is added to data during the training. By using a principal component analysis, we compute the explained variance ratios for these systems which depend on the noise scale. By plotting explained ratios against the noise scale, we show that they change at bifurcations. For different values of the Duffing equation parameters, these changes are of the form of different patterns of growth-decline of the explained ratios. For the magnetic reversal, the changes are of the form of a change in the number of principal components. We comment on the use of this technique for other dynamical systems with bifurcations.

Suggested Citation

  • Mohseni, Morteza, 2023. "Deep learning in bifurcations of particle trajectories," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
  • Handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923008676
    DOI: 10.1016/j.chaos.2023.113966
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923008676
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113966?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aksoy, Abdullah & Yigit, Enes, 2023. "Automatic soliton wave recognition using deep learning algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Hanchen Wang & Tianfan Fu & Yuanqi Du & Wenhao Gao & Kexin Huang & Ziming Liu & Payal Chandak & Shengchao Liu & Peter Katwyk & Andreea Deac & Anima Anandkumar & Karianne Bergen & Carla P. Gomes & Shir, 2023. "Scientific discovery in the age of artificial intelligence," Nature, Nature, vol. 620(7972), pages 47-60, August.
    3. Hanchen Wang & Tianfan Fu & Yuanqi Du & Wenhao Gao & Kexin Huang & Ziming Liu & Payal Chandak & Shengchao Liu & Peter Katwyk & Andreea Deac & Anima Anandkumar & Karianne Bergen & Carla P. Gomes & Shir, 2023. "Publisher Correction: Scientific discovery in the age of artificial intelligence," Nature, Nature, vol. 621(7978), pages 33-33, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial intelligence and the transformation of higher education institutions," Papers 2402.08143, arXiv.org.
    2. Fabian Dvorak & Regina Stumpf & Sebastian Fehrler & Urs Fischbacher, 2024. "Generative AI Triggers Welfare-Reducing Decisions in Humans," Papers 2401.12773, arXiv.org.
    3. Koehler, Maximilian & Sauermann, Henry, 2024. "Algorithmic management in scientific research," Research Policy, Elsevier, vol. 53(4).
    4. Anil R. Doshi & Oliver P. Hauser, 2023. "Generative artificial intelligence enhances creativity but reduces the diversity of novel content," Papers 2312.00506, arXiv.org, revised Mar 2024.
    5. Stefano Bianchini & Moritz Muller & Pierre Pelletier, 2023. "Drivers and Barriers of AI Adoption and Use in Scientific Research," Papers 2312.09843, arXiv.org, revised Feb 2024.
    6. Nicoleta Mihaela Doran & Gabriela Badareu & Marius Dalian Doran & Maria Enescu & Anamaria Liliana Staicu & Mariana Niculescu, 2024. "Greening Automation: Policy Recommendations for Sustainable Development in AI-Driven Industries," Sustainability, MDPI, vol. 16(12), pages 1-17, June.
    7. Almeida, Derick & Naudé, Wim & Sequeira, Tiago Neves, 2024. "Artificial Intelligence and the Discovery of New Ideas: Is an Economic Growth Explosion Imminent?," IZA Discussion Papers 16766, Institute of Labor Economics (IZA).
    8. Giacomo Damioli & Vincent Van Roy & Daniel Vertesy & Marco Vivarelli, 2024. "AI as a new emerging technological paradigm: evidence from global patenting," DISCE - Quaderni del Dipartimento di Politica Economica dipe0038, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    9. Sani I. Abba & Mohamed A. Yassin & Auwalu Saleh Mubarak & Syed Muzzamil Hussain Shah & Jamilu Usman & Atheer Y. Oudah & Sujay Raghavendra Naganna & Isam H. Aljundi, 2023. "Drinking Water Resources Suitability Assessment Based on Pollution Index of Groundwater Using Improved Explainable Artificial Intelligence," Sustainability, MDPI, vol. 15(21), pages 1-21, November.
    10. Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial Intelligence and the Transformation of Higher Education Institutions: A Systems Approach," Sustainability, MDPI, vol. 16(14), pages 1-22, July.
    11. He, Hongwen & Su, Qicong & Huang, Ruchen & Niu, Zegong, 2024. "Enabling intelligent transferable energy management of series hybrid electric tracked vehicle across motion dimensions via soft actor-critic algorithm," Energy, Elsevier, vol. 294(C).
    12. Chen Wang & Xu Wu & Ziyu Xie & Tomasz Kozlowski, 2023. "Scalable Inverse Uncertainty Quantification by Hierarchical Bayesian Modeling and Variational Inference," Energies, MDPI, vol. 16(22), pages 1-23, November.
    13. Damioli, Giacomo & Van Roy, Vincent & Vertesy, Daniel & Vivarelli, Marco, 2024. "Is Artificial Intelligence Generating a New Paradigm? Evidence from the Emerging Phase," IZA Discussion Papers 17183, Institute of Labor Economics (IZA).
    14. Singh, Kuldeep & Chatterjee, Sheshadri & Mariani, Marcello, 2024. "Applications of generative AI and future organizational performance: The mediating role of explorative and exploitative innovation and the moderating role of ethical dilemmas and environmental dynamis," Technovation, Elsevier, vol. 133(C).
    15. Jiao, Yong & Wang, Gaofei & Li, Chengyou & Pan, Jia, 2024. "Digital inclusive finance, factor flow and industrial structure upgrading: Evidence from the yellow river basin," Finance Research Letters, Elsevier, vol. 62(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923008676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.