IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6305-d453335.html
   My bibliography  Save this article

Evaluation of the Summer Overheating Phenomenon in Reinforced Concrete and Cross Laminated Timber Residential Buildings in the Cold and Severe Cold Regions of China

Author

Listed:
  • Haibo Guo

    (School of Architecture, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150001, China)

  • Lu Huang

    (School of Architecture, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150001, China)

  • Wenjie Song

    (School of Architecture, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150001, China)

  • Xinyue Wang

    (School of Architecture, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150001, China)

  • Hongnan Wang

    (School of Architecture, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150001, China)

  • Xinning Zhao

    (School of Architecture, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150001, China)

Abstract

As the climate changed in recent years, an increase in summer indoor temperatures in severe cold and cold regions of China has started to affect thermal comfort. However, the local design standard for energy efficiency does not recognize this phenomenon. This paper reports the potential overheating phenomenon in residential buildings and examines the rationale for the current thermal designs adopted in severe cold and cold regions of China. In this study, the two most commonly used building materials, reinforced concrete (RC) and cross laminated timber (CLT), are used separately in the design of an 18-story residential building envelope located in six different cities in the severe cold and cold regions. The energy consumption and indoor operative temperatures during the operation of these buildings are simulated using Integrated Environmental Solutions Virtual Environment (IES VE). The results demonstrate that both the RC and the CLT buildings experience varying degrees of overheating in any climate subregion. The CLT buildings have longer overheating hours compared to the RC buildings, especially in the cold regions. The results also indicate that for apartments on higher stories, the cooling energy consumption and indoor temperature also increase gradually. The research results suggest that the local design standard for energy efficiency needs to be adjusted by adding thermal design methods for summer to reduce the periods of overheating.

Suggested Citation

  • Haibo Guo & Lu Huang & Wenjie Song & Xinyue Wang & Hongnan Wang & Xinning Zhao, 2020. "Evaluation of the Summer Overheating Phenomenon in Reinforced Concrete and Cross Laminated Timber Residential Buildings in the Cold and Severe Cold Regions of China," Energies, MDPI, vol. 13(23), pages 1-25, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6305-:d:453335
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6305/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6305/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kuczyński, T. & Staszczuk, A., 2020. "Experimental study of the influence of thermal mass on thermal comfort and cooling energy demand in residential buildings," Energy, Elsevier, vol. 195(C).
    2. Dodoo, Ambrose & Gustavsson, Leif, 2016. "Energy use and overheating risk of Swedish multi-storey residential buildings under different climate scenarios," Energy, Elsevier, vol. 97(C), pages 534-548.
    3. Bachir Nebia & Kheira Tabet Aoul, 2017. "Overheating and Daylighting; Assessment Tool in Early Design of London’s High-Rise Residential Buildings," Sustainability, MDPI, vol. 9(9), pages 1-23, August.
    4. Hudobivnik, Blaž & Pajek, Luka & Kunič, Roman & Košir, Mitja, 2016. "FEM thermal performance analysis of multi-layer external walls during typical summer conditions considering high intensity passive cooling," Applied Energy, Elsevier, vol. 178(C), pages 363-375.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna Ferdyn-Grygierek & Krzysztof Grygierek & Anna Gumińska & Piotr Krawiec & Adrianna Oćwieja & Robert Poloczek & Julia Szkarłat & Aleksandra Zawartka & Daria Zobczyńska & Daria Żukowska-Tejsen, 2021. "Passive Cooling Solutions to Improve Thermal Comfort in Polish Dwellings," Energies, MDPI, vol. 14(12), pages 1-15, June.
    2. Zhu Ma & Changzheng Shi & Hegao Wu & Songzi Liu, 2022. "Structural Behavior of Massive Reinforced Concrete Structures Exposed to Thermomechanical Loads," Energies, MDPI, vol. 15(7), pages 1-18, April.
    3. Imre Csáky, 2021. "Analysis of Daily Energy Demand for Cooling in Buildings with Different Comfort Categories—Case Study," Energies, MDPI, vol. 14(15), pages 1-17, August.
    4. Siqi Qin & Ying Liu & Ge Yu & Rulin Li, 2023. "Assessing the Potential of Integrated Shading Devices to Mitigate Overheating Risk in University Buildings in Severe Cold Regions of China: A Case Study in Harbin," Energies, MDPI, vol. 16(17), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joanna Ferdyn-Grygierek & Krzysztof Grygierek & Anna Gumińska & Piotr Krawiec & Adrianna Oćwieja & Robert Poloczek & Julia Szkarłat & Aleksandra Zawartka & Daria Zobczyńska & Daria Żukowska-Tejsen, 2021. "Passive Cooling Solutions to Improve Thermal Comfort in Polish Dwellings," Energies, MDPI, vol. 14(12), pages 1-15, June.
    2. Karanafti, Aikaterina & Theodosiou, Theodoros & Tsikaloudaki, Katerina, 2022. "Assessment of buildings’ dynamic thermal insulation technologies-A review," Applied Energy, Elsevier, vol. 326(C).
    3. Robert C. Vella & Charles Yousif & Francisco Javier Rey Martinez & Javier María Rey Hernandez, 2022. "Prioritising Passive Measures over Air Conditioning to Achieve Thermal Comfort in Mediterranean Baroque Churches," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    4. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    5. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    7. Samuelson, Holly W. & Baniassadi, Amir & Gonzalez, Pablo Izaga, 2020. "Beyond energy savings: Investigating the co-benefits of heat resilient architecture," Energy, Elsevier, vol. 204(C).
    8. Nima Monghasemi & Amir Vadiee & Konstantinos Kyprianidis & Elaheh Jalilzadehazhari, 2023. "Rank-Based Assessment of Grid-Connected Rooftop Solar Panel Deployments Considering Scenarios for a Postponed Installation," Energies, MDPI, vol. 16(21), pages 1-16, October.
    9. Ayikoe Tettey, Uniben Yao & Gustavsson, Leif, 2020. "Energy savings and overheating risk of deep energy renovation of a multi-storey residential building in a cold climate under climate change," Energy, Elsevier, vol. 202(C).
    10. Xu, Bin & Chen, Xing-ni & Fei, Yue & Gan, Wen-tao & Pei, Gang, 2023. "Optimizing the applicability of cool paint through phase change material according to the energy consumption characteristics in different regions," Renewable Energy, Elsevier, vol. 212(C), pages 953-971.
    11. Pérez-Andreu, Víctor & Aparicio-Fernández, Carolina & Martínez-Ibernón, Ana & Vivancos, José-Luis, 2018. "Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate," Energy, Elsevier, vol. 165(PA), pages 63-74.
    12. Mehmood, Sajid & Lizana, Jesus & Núñez-Peiró, Miguel & Maximov, Serguey A. & Friedrich, Daniel, 2022. "Resilient cooling pathway for extremely hot climates in southern Asia," Applied Energy, Elsevier, vol. 325(C).
    13. Mateja Dovjak & Masanori Shukuya & Aleš Krainer, 2018. "User-Centred Healing-Oriented Conditions in the Design of Hospital Environments," IJERPH, MDPI, vol. 15(10), pages 1-28, September.
    14. Justin Contat & Carrie Hopkins & Luis Mejia & Matthew Suandi, 2024. "When climate meets real estate: A survey of the literature," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 52(3), pages 618-659, May.
    15. Skiba, Marta & Mrówczyńska, Maria & Sztubecka, Małgorzata & Bazan-Krzywoszańska, Anna & Kazak, Jan K. & Leśniak, Agnieszka & Janowiec, Filip, 2021. "Probability estimation of the city’s energy efficiency improvement as a result of using the phase change materials in heating networks," Energy, Elsevier, vol. 228(C).
    16. David Božiček & Roman Kunič & Aleš Krainer & Uroš Stritih & Mateja Dovjak, 2023. "Mutual Influence of External Wall Thermal Transmittance, Thermal Inertia, and Room Orientation on Office Thermal Comfort and Energy Demand," Energies, MDPI, vol. 16(8), pages 1-29, April.
    17. Staszczuk, A. & Kuczyński, T., 2019. "The impact of floor thermal capacity on air temperature and energy consumption in buildings in temperate climate," Energy, Elsevier, vol. 181(C), pages 908-915.
    18. Tadeusz Kuczyński & Anna Staszczuk, 2023. "Impact of Uninsulated Slab-on-Grade and Masonry Walls on Residential Building Overheating," Energies, MDPI, vol. 16(22), pages 1-22, November.
    19. Tomasz Kisilewicz, 2019. "On the Role of External Walls in the Reduction of Energy Demand and the Mitigation of Human Thermal Discomfort," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    20. Anna Dudzińska & Tomasz Kisilewicz & Ewelina Panasiuk, 2023. "Impact of Material Solutions and a Passive Sports Hall’s Use on Thermal Comfort," Energies, MDPI, vol. 16(23), pages 1-28, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6305-:d:453335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.