IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7478-d1275733.html
   My bibliography  Save this article

Performance Analysis of an R744 Supermarket Refrigeration System Integrated with an Organic Rankine Cycle

Author

Listed:
  • Ayan Sengupta

    (Smart Building Lab, Department of Mechanical Engineering, BITS, Pilani 333031, Rajasthan, India)

  • Paride Gullo

    (Department of Mechanical and Electrical Engineering, University of Southern Denmark (SDU), 6400 Sønderborg, Denmark)

  • Mani Sankar Dasgupta

    (Smart Building Lab, Department of Mechanical Engineering, BITS, Pilani 333031, Rajasthan, India)

  • Vahid Khorshidi

    (Danfoss A/S, 6430 Nordborg, Denmark)

Abstract

The energy and economic performance of a transcritical R744 booster supermarket refrigeration system with and without parallel compression and integrated with an organic Rankine cycle (ORC) was investigated. The results obtained were compared with those of a transcritical R744 booster supermarket refrigeration system with and without parallel compression and those of a conventional R404A direct expansion (DX) system. Nine different locations, namely Copenhagen (Denmark), Paris (France), Athens (Greece), New Delhi (India), Phoenix and Miami (US), Madrid (Spain), Bangkok (Thailand) and Riyadh (Saudi Arabia), were considered. It was discovered that the ORC is effective only at ambient temperatures higher than 27 °C when operating without parallel compression and 28 °C when operating with parallel compression. By using the heat recovered from the gas cooler to fuel the ORC, the latter was found to be capable of covering between 4% and 24% of the electricity demand of the R744 system in warm and hot climates (without parallel compression). The simple payback period of the additional investment associated with the ORC was found to be between 1.4 and 2.5 years in warm climate locations, while the same was found to be less than about 0.5 years in locations experiencing hot climatic conditions.

Suggested Citation

  • Ayan Sengupta & Paride Gullo & Mani Sankar Dasgupta & Vahid Khorshidi, 2023. "Performance Analysis of an R744 Supermarket Refrigeration System Integrated with an Organic Rankine Cycle," Energies, MDPI, vol. 16(22), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7478-:d:1275733
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7478/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7478/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chesi, Andrea & Esposito, Fabio & Ferrara, Giovanni & Ferrari, Lorenzo, 2014. "Experimental analysis of R744 parallel compression cycle," Applied Energy, Elsevier, vol. 135(C), pages 274-285.
    2. Kaiyong Hu & Yumeng Zhang & Wei Yang & Zhi Liu & Huan Sun & Zhili Sun, 2023. "Energy, Exergy, and Economic (3E) Analysis of Transcritical Carbon Dioxide Refrigeration System Based on ORC System," Energies, MDPI, vol. 16(4), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michal Haida & Rafal Fingas & Wojciech Szwajnoch & Jacek Smolka & Michal Palacz & Jakub Bodys & Andrzej J. Nowak, 2019. "An Object-Oriented R744 Two-Phase Ejector Reduced-Order Model for Dynamic Simulations," Energies, MDPI, vol. 12(7), pages 1-24, April.
    2. Artur Bieniek & Jan Kuchmacz & Karol Sztekler & Lukasz Mika & Ewelina Radomska, 2021. "A New Method of Regulating the Cooling Capacity of a Cooling System with CO 2," Energies, MDPI, vol. 14(7), pages 1-18, March.
    3. Laura Nebot-Andrés & Daniel Calleja-Anta & Daniel Sánchez & Ramón Cabello & Rodrigo Llopis, 2019. "Thermodynamic Analysis of a CO 2 Refrigeration Cycle with Integrated Mechanical Subcooling," Energies, MDPI, vol. 13(1), pages 1-17, December.
    4. Haida, Michal & Smolka, Jacek & Hafner, Armin & Ostrowski, Ziemowit & Palacz, Michal & Nowak, Andrzej J. & Banasiak, Krzysztof, 2018. "System model derivation of the CO2 two-phase ejector based on the CFD-based reduced-order model," Energy, Elsevier, vol. 144(C), pages 941-956.
    5. Yikai Wang & Yifan He & Yulong Song & Xiang Yin & Feng Cao & Xiaolin Wang, 2021. "Energy and Exergy Analysis of the Air Source Transcritical CO 2 Heat Pump Water Heater Using CO 2 -Based Mixture as Working Fluid," Energies, MDPI, vol. 14(15), pages 1-18, July.
    6. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Guo, Zhikai & Chen, Jiangping, 2019. "Experimental energetic analysis of CO2/R41 blends in automobile air-conditioning and heat pump systems," Applied Energy, Elsevier, vol. 239(C), pages 1142-1153.
    7. Fang, Zhongcheng & Fan, Chaochao & Yan, Gang & Yu, Jianlin, 2019. "Performance evaluation of a modified refrigeration cycle with parallel compression for refrigerator-freezer applications," Energy, Elsevier, vol. 188(C).
    8. J. Catalán-Gil & L. Nebot-Andrés & D. Sánchez & R. Llopis & R. Cabello & D. Calleja-Anta, 2020. "Improvements in CO 2 Booster Architectures with Different Economizer Arrangements," Energies, MDPI, vol. 13(5), pages 1-29, March.
    9. Song, Yulong & Wang, Haidan & Ma, Yuan & Yin, Xiang & Cao, Feng, 2022. "Energetic, economic, environmental investigation of carbon dioxide as the refrigeration alternative in new energy bus/railway vehicles’ air conditioning systems," Applied Energy, Elsevier, vol. 305(C).
    10. Lawrence Drojetzki & Mieczyslaw Porowski, 2023. "Outdoor Climate as a Decision Variable in the Selection of an Energy-Optimal Refrigeration System Based on Natural Refrigerants for a Supermarket," Energies, MDPI, vol. 16(8), pages 1-24, April.
    11. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    12. Yulong Song & Hongsheng Xie & Mengying Yang & Xiangyu Wei & Feng Cao & Xiang Yin, 2023. "A Comprehensive Assessment of the Refrigerant Charging Amount on the Global Performance of a Transcritical CO 2 -Based Bus Air Conditioning and Heat Pump System," Energies, MDPI, vol. 16(6), pages 1-21, March.
    13. Rajib Uddin Rony & Huojun Yang & Sumathy Krishnan & Jongchul Song, 2019. "Recent Advances in Transcritical CO 2 (R744) Heat Pump System: A Review," Energies, MDPI, vol. 12(3), pages 1-35, January.
    14. Jesús Catalán-Gil & Daniel Sánchez & Rodrigo Llopis & Laura Nebot-Andrés & Ramón Cabello, 2018. "Energy Evaluation of Multiple Stage Commercial Refrigeration Architectures Adapted to F-Gas Regulation," Energies, MDPI, vol. 11(7), pages 1-31, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7478-:d:1275733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.