IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1592-d1058381.html
   My bibliography  Save this article

Electric Vehicle User Behavior: An Analysis of Charging Station Utilization in Canada

Author

Listed:
  • Tim Jonas

    (Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI 02881, USA)

  • Noah Daniels

    (Department of Computer Science and Statistics, University of Rhode Island, Kingston, RI 02881, USA)

  • Gretchen Macht

    (Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI 02881, USA)

Abstract

For a user-centered deployment of electric vehicle supply equipment (EVSE) infrastructure, it is vital to understand electric vehicle user charging behavior. This study identifies user behavioral patterns by analyzing data from more than 7000 charging stations in Canada, comparing residential vs. public Level 2, and public direct current fast (DCFC) vs. public Level 2 charging. A novel algorithm, CHAODA, was applied to identify differences between DCFC and other Level 2 charging options. Through a multivariate and holistic methodology, various patterns emerge, identifying differences in the utilization and seasonality of different EVSE types. The study provides evidence of an “EV Duck Curve” that amplifies the baseline of the power production “Duck Curve,” confirming future challenges for grid stability. Implementations of this study can support future EVSE infrastructure planning efforts and help improve the overall service of electric vehicle supply equipment and grid stability.

Suggested Citation

  • Tim Jonas & Noah Daniels & Gretchen Macht, 2023. "Electric Vehicle User Behavior: An Analysis of Charging Station Utilization in Canada," Energies, MDPI, vol. 16(4), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1592-:d:1058381
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1592/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1592/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ye Yang & Zhongfu Tan & Yilong Ren, 2020. "Research on Factors That Influence the Fast Charging Behavior of Private Battery Electric Vehicles," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    2. Schulz, Felix & Rode, Johannes, 2022. "Public charging infrastructure and electric vehicles in Norway," Energy Policy, Elsevier, vol. 160(C).
    3. Almeida Neves, Sónia & Cardoso Marques, António & Alberto Fuinhas, José, 2019. "Technological progress and other factors behind the adoption of electric vehicles: Empirical evidence for EU countries," Research in Transportation Economics, Elsevier, vol. 74(C), pages 28-39.
    4. Li, Zhenhe & Khajepour, Amir & Song, Jinchun, 2019. "A comprehensive review of the key technologies for pure electric vehicles," Energy, Elsevier, vol. 182(C), pages 824-839.
    5. Garas, Dahlia & Collantes, Gustavo O & Nicholas, Michael A, 2016. "City of Vancouver EV Infrastructure Strategy Report," Institute of Transportation Studies, Working Paper Series qt0w90c61t, Institute of Transportation Studies, UC Davis.
    6. Hsu, Chih-Wei & Fingerman, Kevin, 2021. "Public electric vehicle charger access disparities across race and income in California," Transport Policy, Elsevier, vol. 100(C), pages 59-67.
    7. Morrissey, Patrick & Weldon, Peter & O’Mahony, Margaret, 2016. "Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour," Energy Policy, Elsevier, vol. 89(C), pages 257-270.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bingkun Song & Udaya K. Madawala & Craig A. Baguley, 2023. "Optimal Planning Strategy for Reconfigurable Electric Vehicle Chargers in Car Parks," Energies, MDPI, vol. 16(20), pages 1-21, October.
    2. Xiuli Wang & Junkai Wei & Fushuan Wen & Kai Wang, 2023. "A Trading Mode Based on the Management of Residual Electric Energy in Electric Vehicles," Energies, MDPI, vol. 16(17), pages 1-23, August.
    3. Marcelo Bruno Capeletti & Bruno Knevitz Hammerschmitt & Leonardo Nogueira Fontoura da Silva & Nelson Knak Neto & Jordan Passinato Sausen & Carlos Henrique Barriquello & Alzenira da Rosa Abaide, 2024. "User Behavior in Fast Charging of Electric Vehicles: An Analysis of Parameters and Clustering," Energies, MDPI, vol. 17(19), pages 1-20, September.
    4. Ahmad Almaghrebi & Kevin James & Fares Al Juheshi & Mahmoud Alahmad, 2024. "Insights into Household Electric Vehicle Charging Behavior: Analysis and Predictive Modeling," Energies, MDPI, vol. 17(4), pages 1-20, February.
    5. Yang, YeHa & Yang, SoYoung & Moon, HyungBin & Woo, JongRoul, 2024. "Analyzing heterogeneous electric vehicle charging preferences for strategic time-of-use tariff design and infrastructure development: A latent class approach," Applied Energy, Elsevier, vol. 374(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonas, Tim & Macht, Gretchen A., 2024. "Analyzing the urban-rural divide: Understanding geographic variations in charging behavior for a user-centered EVSE infrastructure," Journal of Transport Geography, Elsevier, vol. 116(C).
    2. Iogansen, Xiatian & Wang, Kailai & Bunch, David & Matson, Grant & Circella, Giovanni, 2023. "Deciphering the factors associated with adoption of alternative fuel vehicles in California: An investigation of latent attitudes, socio-demographics, and neighborhood effects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    3. Kim, Hyunjung & Kim, Dae-Wook & Kim, Man-Keun, 2022. "Economics of charging infrastructure for electric vehicles in Korea," Energy Policy, Elsevier, vol. 164(C).
    4. Peng, Ruoqing & Tang, Justin Hayse Chiwing G. & Yang, Xiong & Meng, Meng & Zhang, Jie & Zhuge, Chengxiang, 2024. "Investigating the factors influencing the electric vehicle market share: A comparative study of the European Union and United States," Applied Energy, Elsevier, vol. 355(C).
    5. Jain, Monika & Singh, Archana, 2024. "An empirical study on electric vehicle adoption in India: A step towards a greener environment," Transport Policy, Elsevier, vol. 156(C), pages 112-125.
    6. Khatua, Apalak & Ranjan Kumar, Rajeev & Kumar De, Supriya, 2023. "Institutional enablers of electric vehicle market: Evidence from 30 countries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    7. Solvi Hoen, Fredrik & Díez-Gutiérrez, María & Babri, Sahar & Hess, Stephane & Tørset, Trude, 2023. "Charging electric vehicles on long trips and the willingness to pay to reduce waiting for charging. Stated preference survey in Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    8. Trinko, David & Horesh, Noah & Porter, Emily & Dunckley, Jamie & Miller, Erika & Bradley, Thomas, 2023. "Transportation and electricity systems integration via electric vehicle charging-as-a-service: A review of techno-economic and societal benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    9. Chang, Tai-Wei, 2023. "An indispensable role in promoting the electric vehicle Industry: An empirical test to explore the integration framework of electric vehicle charger and electric vehicle purchase behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    10. Yunhan Zheng & David R. Keith & Shenhao Wang & Mi Diao & Jinhua Zhao, 2024. "Effects of electric vehicle charging stations on the economic vitality of local businesses," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Konstantina Anastasiadou & Nikolaos Gavanas, 2022. "State-of-the-Art Review of the Key Factors Affecting Electric Vehicle Adoption by Consumers," Energies, MDPI, vol. 15(24), pages 1-23, December.
    12. Graham Town & Seyedfoad Taghizadeh & Sara Deilami, 2022. "Review of Fast Charging for Electrified Transport: Demand, Technology, Systems, and Planning," Energies, MDPI, vol. 15(4), pages 1-30, February.
    13. Umm e Hanni & Toshiyuki Yamamoto & Toshiyuki Nakamura, 2024. "An Analysis of Electric Vehicle Charging Intentions in Japan," Sustainability, MDPI, vol. 16(3), pages 1-22, January.
    14. Williams, B. & Bishop, D. & Hooper, G. & Chase, J.G., 2024. "Driving change: Electric vehicle charging behavior and peak loading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    15. Sofiane Bacha & Ramzi Saadi & Mohamed Yacine Ayad & Mohamed Sahraoui & Khaled Laadjal & Antonio J. Marques Cardoso, 2023. "Autonomous Electric-Vehicle Control Using Speed Planning Algorithm and Back-Stepping Approach," Energies, MDPI, vol. 16(5), pages 1-26, March.
    16. Gallaher, Adam & Graziano, Marcello & Fiaschetti, Maurizio, 2021. "Legacy and shockwaves: A spatial analysis of strengthening resilience of the power grid in Connecticut," Energy Policy, Elsevier, vol. 159(C).
    17. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    18. Gkoumas, Konstantinos & van Balen, Mitchell & Tsakalidis, Anastasios & Pekar, Ferenc, 2022. "Evaluating the development of transport technologies in European research and innovation projects between 2007 and 2020," Research in Transportation Economics, Elsevier, vol. 92(C).
    19. Chen, Jie & Wang, Ruochen & Ding, Renkai & Luo, Ding, 2024. "Matching design and numerical optimization of automotive thermoelectric generator system applied to range-extended electric vehicle," Applied Energy, Elsevier, vol. 370(C).
    20. Baresch, Martin & Moser, Simon, 2019. "Allocation of e-car charging: Assessing the utilization of charging infrastructures by location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 388-395.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1592-:d:1058381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.