IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7081-d1259238.html
   My bibliography  Save this article

Remaining Useful Life Prediction of Lithium-Ion Battery Using ICC-CNN-LSTM Methodology

Author

Listed:
  • Catherine Rincón-Maya

    (Departamento de Ingeniería Industrial, Universidad de Antioquia, Medellín 050010, Colombia)

  • Fernando Guevara-Carazas

    (Departamento de Ingeniería Mecánica, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia)

  • Freddy Hernández-Barajas

    (Escuela de Estadística, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia)

  • Carmen Patino-Rodriguez

    (Departamento de Ingeniería Industrial, Universidad de Antioquia, Medellín 050010, Colombia)

  • Olga Usuga-Manco

    (Departamento de Ingeniería Industrial, Universidad de Antioquia, Medellín 050010, Colombia)

Abstract

In recent years, lithium-ion batteries have gained significant attention due to their crucial role in various applications, such as electric vehicles and renewable energy storage. Accurate prediction of the remaining useful life (RUL) of these batteries is essential for optimizing their performance and ensuring reliable operation. In this paper, we propose a novel methodology for RUL prediction using an individual control chart (ICC) to identify and remove degraded data, a convolutional neural network (CNN) to smooth the noise of sensor data and long short-term memory (LSTM) networks to effectively capture both spatial and temporal dependencies within battery data, enabling accurate RUL estimation. We evaluate our proposed model using a comprehensive dataset, and experimental results demonstrate its superior performance compared to existing methods. Our findings highlight the potential of ICC-CNN-LSTM for RUL prediction in lithium-ion batteries and provide valuable insights for future research.

Suggested Citation

  • Catherine Rincón-Maya & Fernando Guevara-Carazas & Freddy Hernández-Barajas & Carmen Patino-Rodriguez & Olga Usuga-Manco, 2023. "Remaining Useful Life Prediction of Lithium-Ion Battery Using ICC-CNN-LSTM Methodology," Energies, MDPI, vol. 16(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7081-:d:1259238
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7081/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7081/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Phattara Khumprom & Nita Yodo, 2019. "A Data-Driven Predictive Prognostic Model for Lithium-ion Batteries based on a Deep Learning Algorithm," Energies, MDPI, vol. 12(4), pages 1-21, February.
    2. Gonçalves, Rui & Ribeiro, Vitor Miguel & Pereira, Fernando Lobo & Rocha, Ana Paula, 2019. "Deep learning in exchange markets," Information Economics and Policy, Elsevier, vol. 47(C), pages 38-51.
    3. Yang, Yixin, 2021. "A machine-learning prediction method of lithium-ion battery life based on charge process for different applications," Applied Energy, Elsevier, vol. 292(C).
    4. Kaijian He & Qian Yang & Lei Ji & Jingcheng Pan & Yingchao Zou, 2023. "Financial Time Series Forecasting with the Deep Learning Ensemble Model," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
    5. Tianfei Sun & Bizhong Xia & Yifan Liu & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2019. "A Novel Hybrid Prognostic Approach for Remaining Useful Life Estimation of Lithium-Ion Batteries," Energies, MDPI, vol. 12(19), pages 1-22, September.
    6. Deng, Zhongwei & Xu, Le & Liu, Hongao & Hu, Xiaosong & Duan, Zhixuan & Xu, Yu, 2023. "Prognostics of battery capacity based on charging data and data-driven methods for on-road vehicles," Applied Energy, Elsevier, vol. 339(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guangzai Ye & Li Feng & Jianlan Guo & Yuqiang Chen, 2024. "IIP-Mixer: Intra–Inter-Patch Mixing Architecture for Battery Remaining Useful Life Prediction," Energies, MDPI, vol. 17(14), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaheer Ansari & Afida Ayob & Molla Shahadat Hossain Lipu & Aini Hussain & Mohamad Hanif Md Saad, 2021. "Multi-Channel Profile Based Artificial Neural Network Approach for Remaining Useful Life Prediction of Electric Vehicle Lithium-Ion Batteries," Energies, MDPI, vol. 14(22), pages 1-22, November.
    2. Ardeshiri, Reza Rouhi & Liu, Ming & Ma, Chengbin, 2022. "Multivariate stacked bidirectional long short term memory for lithium-ion battery health management," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    3. Ming Zhang & Dongfang Yang & Jiaxuan Du & Hanlei Sun & Liwei Li & Licheng Wang & Kai Wang, 2023. "A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms," Energies, MDPI, vol. 16(7), pages 1-28, March.
    4. Das, Kaushik & Kumar, Roushan & Krishna, Anurup, 2024. "Analyzing electric vehicle battery health performance using supervised machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    5. Liu, Yunpeng & Hou, Bo & Ahmed, Moin & Mao, Zhiyu & Feng, Jiangtao & Chen, Zhongwei, 2024. "A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments," Applied Energy, Elsevier, vol. 358(C).
    6. Shaheer Ansari & Afida Ayob & Molla Shahadat Hossain Lipu & Aini Hussain & Mohamad Hanif Md Saad, 2021. "Data-Driven Remaining Useful Life Prediction for Lithium-Ion Batteries Using Multi-Charging Profile Framework: A Recurrent Neural Network Approach," Sustainability, MDPI, vol. 13(23), pages 1-25, December.
    7. Mei Zhang & Wanli Chen & Jun Yin & Tao Feng, 2022. "Health Factor Extraction of Lithium-Ion Batteries Based on Discrete Wavelet Transform and SOH Prediction Based on CatBoost," Energies, MDPI, vol. 15(15), pages 1-17, July.
    8. He, Ning & Wang, Qiqi & Lu, Zhenfeng & Chai, Yike & Yang, Fangfang, 2024. "Early prediction of battery lifetime based on graphical features and convolutional neural networks," Applied Energy, Elsevier, vol. 353(PA).
    9. Wei, Meng & Balaya, Palani & Ye, Min & Song, Ziyou, 2022. "Remaining useful life prediction for 18650 sodium-ion batteries based on incremental capacity analysis," Energy, Elsevier, vol. 261(PA).
    10. Jiwei Wang & Hao Li & Chunling Wu & Yujun Shi & Linxuan Zhang & Yi An, 2024. "State of Health Estimations for Lithium-Ion Batteries Based on MSCNN," Energies, MDPI, vol. 17(17), pages 1-21, August.
    11. Muhammad Waseem & Jingyuan Huang & Chak-Nam Wong & C. K. M. Lee, 2023. "Data-Driven GWO-BRNN-Based SOH Estimation of Lithium-Ion Batteries in EVs for Their Prognostics and Health Management," Mathematics, MDPI, vol. 11(20), pages 1-27, October.
    12. Wang, Zhe & Yang, Fangfang & Xu, Qiang & Wang, Yongjian & Yan, Hong & Xie, Min, 2023. "Capacity estimation of lithium-ion batteries based on data aggregation and feature fusion via graph neural network," Applied Energy, Elsevier, vol. 336(C).
    13. Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," LawArXiv kczj5, Center for Open Science.
    14. J. N. Chandra Sekhar & Bullarao Domathoti & Ernesto D. R. Santibanez Gonzalez, 2023. "Prediction of Battery Remaining Useful Life Using Machine Learning Algorithms," Sustainability, MDPI, vol. 15(21), pages 1-28, October.
    15. Yongsheng Shi & Tailin Li & Leicheng Wang & Hongzhou Lu & Yujun Hu & Beichen He & Xinran Zhai, 2023. "A Method for Predicting the Life of Lithium-Ion Batteries Based on Successive Variational Mode Decomposition and Optimized Long Short-Term Memory," Energies, MDPI, vol. 16(16), pages 1-16, August.
    16. Meng, Huixing & Geng, Mengyao & Xing, Jinduo & Zio, Enrico, 2022. "A hybrid method for prognostics of lithium-ion batteries capacity considering regeneration phenomena," Energy, Elsevier, vol. 261(PB).
    17. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    18. Halil Akbaş & Gültekin Özdemir, 2020. "An Integrated Prediction and Optimization Model of a Thermal Energy Production System in a Factory Producing Furniture Components," Energies, MDPI, vol. 13(22), pages 1-29, November.
    19. Tang, Aihua & Jiang, Yihan & Nie, Yuwei & Yu, Quanqing & Shen, Weixiang & Pecht, Michael G., 2023. "Health and lifespan prediction considering degradation patterns of lithium-ion batteries based on transferable attention neural network," Energy, Elsevier, vol. 279(C).
    20. Yang, Bowen & Wang, Dafang & Yu, Beike & Wang, Facheng & Chen, Shiqin & Sun, Xu & Dong, Haosong, 2024. "Research on online passive electrochemical impedance spectroscopy and its outlook in battery management," Applied Energy, Elsevier, vol. 363(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7081-:d:1259238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.