IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7027-d1256923.html
   My bibliography  Save this article

Hydrothermal Carbonization of Sewage Sludge: New Improvements in Phosphatic Fertilizer Production and Process Water Treatment Using Freeze Concentration

Author

Listed:
  • Gabriel Gerner

    (Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Campus Grüental, CH-8820 Wädenswil, Switzerland)

  • Jae Wook Chung

    (Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Campus Grüental, CH-8820 Wädenswil, Switzerland)

  • Luca Meyer

    (Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Campus Grüental, CH-8820 Wädenswil, Switzerland)

  • Rahel Wanner

    (Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Campus Grüental, CH-8820 Wädenswil, Switzerland)

  • Simon Heiniger

    (Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Campus Grüental, CH-8820 Wädenswil, Switzerland)

  • Daniel Seiler

    (Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Campus Grüental, CH-8820 Wädenswil, Switzerland)

  • Rolf Krebs

    (Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Campus Grüental, CH-8820 Wädenswil, Switzerland)

  • Alexander Treichler

    (Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences (ZHAW), Campus Reidbach, CH-8820 Wädenswil, Switzerland)

  • Roman Kontic

    (School of Engineering, Zurich University of Applied Sciences (ZHAW), CH-8401 Winterthur, Switzerland)

  • Beatrice Kulli

    (Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Campus Grüental, CH-8820 Wädenswil, Switzerland)

Abstract

In recent years, promising developments in the hydrothermal carbonization (HTC) of sewage sludge, as well as the potential to reclaim phosphorus and nitrogen, have emerged. In this study, the HTC of digested sewage sludge (DSS) was investigated for the downstream production of heavy metal (HM)-free fertilizer and the use of freeze concentration (FC) as a novel technology for process water treatment. To obtain clean fertilizer, phosphatic acid extracts were first treated with ion-exchange resins to remove dissolved HM, as well as phosphorus precipitating agents (i.e., aluminum and iron). Over 98% of the aluminum (Al) and 97% of the iron (Fe) could be removed in a single treatment step. The purified extract was then used for the precipitation of HM-free struvite crystals, with P-recovery rates exceeding 89%. Process water (PW) makes up the largest share of the two main HTC-products (i.e., hydrochar and PW) and is very rich in organic compounds. Compared to evaporation or membrane separation, FC is a promising technology for concentrating solutes from PW. Separation experiments resulted in the recovery of over 90% of the dissolved compounds in the concentrate. In our study, the concentrate was later utilized as an ammonium source for struvite precipitation, and the subsequent aerobic digestion of the remaining ice water resulted in an 85% reduction in chemical oxygen demand (COD) in 15 days.

Suggested Citation

  • Gabriel Gerner & Jae Wook Chung & Luca Meyer & Rahel Wanner & Simon Heiniger & Daniel Seiler & Rolf Krebs & Alexander Treichler & Roman Kontic & Beatrice Kulli, 2023. "Hydrothermal Carbonization of Sewage Sludge: New Improvements in Phosphatic Fertilizer Production and Process Water Treatment Using Freeze Concentration," Energies, MDPI, vol. 16(20), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7027-:d:1256923
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7027/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7027/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dana Cordell & Stuart White, 2011. "Peak Phosphorus: Clarifying the Key Issues of a Vigorous Debate about Long-Term Phosphorus Security," Sustainability, MDPI, vol. 3(10), pages 1-23, October.
    2. Imane Uald-lamkaddam & Arezoo Dadrasnia & Laia Llenas & Sergio Ponsá & Joan Colón & Esther Vega & Mabel Mora, 2021. "Application of Freeze Concentration Technologies to Valorize Nutrient-Rich Effluents Generated from the Anaerobic Digestion of Agro-Industrial Wastes," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    3. Jonas Mehr & Michael Jedelhauser & Claudia R. Binder, 2018. "Transition of the Swiss Phosphorus System towards a Circular Economy—Part 1: Current State and Historical Developments," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    4. Taina Lühmann & Benjamin Wirth, 2020. "Sewage Sludge Valorization via Hydrothermal Carbonization: Optimizing Dewaterability and Phosphorus Release," Energies, MDPI, vol. 13(17), pages 1-16, August.
    5. Gabriel Gerner & Luca Meyer & Rahel Wanner & Thomas Keller & Rolf Krebs, 2021. "Sewage Sludge Treatment by Hydrothermal Carbonization: Feasibility Study for Sustainable Nutrient Recovery and Fuel Production," Energies, MDPI, vol. 14(9), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salah Jellali & Antonis A. Zorpas & Sulaiman Alhashmi & Mejdi Jeguirim, 2022. "Recent Advances in Hydrothermal Carbonization of Sewage Sludge," Energies, MDPI, vol. 15(18), pages 1-6, September.
    2. M. Toufiq Reza, 2022. "Hydrothermal Carbonization," Energies, MDPI, vol. 15(15), pages 1-3, July.
    3. Gerald Steiner & Bernhard Geissler, 2018. "Sustainable Mineral Resource Management—Insights into the Case of Phosphorus," Sustainability, MDPI, vol. 10(8), pages 1-8, August.
    4. Kataki, Sampriti & West, Helen & Clarke, Michèle & Baruah, D.C., 2016. "Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 142-156.
    5. Marek Kopecký & Ladislav Kolář & Petr Konvalina & Otakar Strunecký & Florina Teodorescu & Petr Mráz & Jiří Peterka & Radka Váchalová & Jaroslav Bernas & Petr Bartoš & Feodor Filipov & Daniel Bucur, 2020. "Modified Biochar—A Tool for Wastewater Treatment," Energies, MDPI, vol. 13(20), pages 1-13, October.
    6. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    7. Daniel Reißmann & Daniela Thrän & Alberto Bezama, 2018. "Key Development Factors of Hydrothermal Processes in Germany by 2030: A Fuzzy Logic Analysis," Energies, MDPI, vol. 11(12), pages 1-20, December.
    8. Karel Mulder, 2019. "Future Options for Sewage and Drainage Systems Three Scenarios for Transitions and Continuity," Sustainability, MDPI, vol. 11(5), pages 1-15, March.
    9. Marissa A. De Boer & Anjelika G. Romeo-Hall & Tomas M. Rooimans & J. Chris Slootweg, 2018. "An Assessment of the Drivers and Barriers for the Deployment of Urban Phosphorus Recovery Technologies: A Case Study of The Netherlands," Sustainability, MDPI, vol. 10(6), pages 1-19, May.
    10. Maaß, Oliver & Grundmann, Philipp & von Bock und Polach, Carlotta, 2014. "Added-value from innovative value chains by establishing nutrient cycles via struvite," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 126-136.
    11. Halina Pawlak-Kruczek & Agnieszka Urbanowska & Lukasz Niedzwiecki & Michał Czerep & Marcin Baranowski & Christian Aragon-Briceño & Małgorzata Kabsch-Korbutowicz & Amit Arora & Przemysław Seruga & Mate, 2023. "Hydrothermal Carbonisation as Treatment for Effective Moisture Removal from Digestate—Mechanical Dewatering, Flashing-Off, and Condensates’ Processing," Energies, MDPI, vol. 16(13), pages 1-9, July.
    12. Heiner Brookman & Fabian Gievers & Volker Zelinski & Jan Ohlert & Achim Loewen, 2018. "Influence of Hydrothermal Carbonization on Composition, Formation and Elimination of Biphenyls, Dioxins and Furans in Sewage Sludge," Energies, MDPI, vol. 11(6), pages 1-13, June.
    13. Ng, Sin Jin & Li, Bing & He, Zhengyang & Han, Jing-Cheng & Munir, Muhammad Tajammal & Wu, Xiaofeng & Huang, Yuefei, 2023. "Global phosphorus cycling: The impact of international commercial trading and the path towards sustainable phosphorus management," Resources Policy, Elsevier, vol. 85(PA).
    14. Simons, Andrew M. & Ahmed, Milkiyas & Blalock, Garrick & Nesin, Bourcard, 2023. "Indigenous bone fertilizer for growth and food security: A local solution to a global challenge," Food Policy, Elsevier, vol. 114(C).
    15. Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy & Brem, Gerrit & Wang, Shule & Wen, Yuming & Yang, Weihong & Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Urbanowska, Agnieszka & Mościcki,, 2022. "Integration of hydrothermal carbonization treatment for water and energy recovery from organic fraction of municipal solid waste digestate," Renewable Energy, Elsevier, vol. 184(C), pages 577-591.
    16. Alexandra Jurgilevich & Traci Birge & Johanna Kentala-Lehtonen & Kaisa Korhonen-Kurki & Janna Pietikäinen & Laura Saikku & Hanna Schösler, 2016. "Transition towards Circular Economy in the Food System," Sustainability, MDPI, vol. 8(1), pages 1-14, January.
    17. Mew, Michael & Steiner, Gerald & Haneklaus, Nils & Geissler, Bernhard, 2023. "Phosphate price peaks and negotiations – Part 2: The 2008 peak and implications for the future," Resources Policy, Elsevier, vol. 83(C).
    18. Chowdhury, Rubel Biswas & Moore, Graham A. & Weatherley, Anthony J. & Arora, Meenakshi, 2014. "A review of recent substance flow analyses of phosphorus to identify priority management areas at different geographical scales," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 213-228.
    19. Benjamin C. McLellan & Eiji Yamasue & Tetsuo Tezuka & Glen Corder & Artem Golev & Damien Giurco, 2016. "Critical Minerals and Energy–Impacts and Limitations of Moving to Unconventional Resources," Resources, MDPI, vol. 5(2), pages 1-40, May.
    20. Baum, Seth D. & Handoh, Itsuki C., 2014. "Integrating the planetary boundaries and global catastrophic risk paradigms," Ecological Economics, Elsevier, vol. 107(C), pages 13-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7027-:d:1256923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.