IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6981-d1255052.html
   My bibliography  Save this article

Thermoelectric-Based Radiant Cooling Systems: An Experimental and Numerical Investigation of Thermal Comfort

Author

Listed:
  • Benjamin Kubwimana

    (Department of Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA)

  • Mohadeseh Seyednezhad

    (Department of Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA)

  • Hamidreza Najafi

    (Department of Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA)

Abstract

Researching novel cooling and heating technologies as alternatives to conventional vapor-compression refrigeration cycles has received growing attention in recent years. Thermoelectric (TE) systems rank among promising emerging technologies within this category. This paper presents a comprehensive investigation, utilizing numerical modeling and analysis via COMSOL Multiphysics along with experimental validation, to evaluate the performance of a radiant cooling ceiling panel working on thermoelectric principles. Performance metrics are based on thermal comfort levels within the designed test chamber. The system comprises a rectangular test chamber (~1.2 m × 1.2 m × 1.5 m) with a centrally positioned ceiling panel (dimensions: 0.6 m × 0.6 m × 0.002 m). Four TE modules are attached on top of the ceiling panel, facilitating effective cooling to regulate the ceiling temperature to the desired setpoint. The resultant lower ceiling temperature enables heat exchange within the chamber environment via radiation and convection mechanisms. This study examines the time-dependent variations in mean radiant temperature and operative temperature under natural convection conditions, with comfort level assessment carried out using the PMV method according to ASHRAE Standard 55. An experimental chamber is built to validate the numerical model by performing experiments at various ceiling temperatures. Design challenges are discussed in detail. The results of this investigation offer valuable insights into the anticipated thermal comfort achievable through TE-based radiant cooling systems across various operating conditions.

Suggested Citation

  • Benjamin Kubwimana & Mohadeseh Seyednezhad & Hamidreza Najafi, 2023. "Thermoelectric-Based Radiant Cooling Systems: An Experimental and Numerical Investigation of Thermal Comfort," Energies, MDPI, vol. 16(19), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6981-:d:1255052
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6981/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6981/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohadeseh Seyednezhad & Hamidreza Najafi & Benjamin Kubwimana, 2021. "Numerical and Experimental Investigation of a Thermoelectric-Based Radiant Ceiling Panel with Phase Change Material for Building Cooling Applications," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    2. He, Wei & Zhou, Jinzhi & Hou, Jingxin & Chen, Chi & Ji, Jie, 2013. "Theoretical and experimental investigation on a thermoelectric cooling and heating system driven by solar," Applied Energy, Elsevier, vol. 107(C), pages 89-97.
    3. Irshad, Kashif & Habib, Khairul & Basrawi, Firdaus & Saha, Bidyut Baran, 2017. "Study of a thermoelectric air duct system assisted by photovoltaic wall for space cooling in tropical climate," Energy, Elsevier, vol. 119(C), pages 504-522.
    4. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Yu, Jinghua & Xu, Xinhua & Su, Xiaosong, 2020. "Towards net zero energy building: The application potential and adaptability of photovoltaic-thermoelectric-battery wall system," Applied Energy, Elsevier, vol. 258(C).
    5. Amoah B.O. Kwame & Nguyen V. Troy & Najafi Hamidreza, 2020. "A Multi-Facet Retrofit Approach to Improve Energy Efficiency of Existing Class of Single-Family Residential Buildings in Hot-Humid Climate Zones," Energies, MDPI, vol. 13(5), pages 1-26, March.
    6. Zuazua-Ros, Amaia & Martín-Gómez, César & Ibañez-Puy, Elia & Vidaurre-Arbizu, Marina & Gelbstein, Yaniv, 2019. "Investigation of the thermoelectric potential for heating, cooling and ventilation in buildings: Characterization options and applications," Renewable Energy, Elsevier, vol. 131(C), pages 229-239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sung-Jin Kwon & Jae-Hun Jo & Dong-Seok Lee, 2024. "Proposal of Three Methods for Deriving Representative Mean Radiant Temperatures Considering Zone Spatial Distributions," Energies, MDPI, vol. 17(20), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohadeseh Seyednezhad & Hamidreza Najafi & Benjamin Kubwimana, 2021. "Numerical and Experimental Investigation of a Thermoelectric-Based Radiant Ceiling Panel with Phase Change Material for Building Cooling Applications," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    2. Duan, Mengfan & Sun, Hongli & Lin, Borong & Wu, Yifan, 2021. "Evaluation on the applicability of thermoelectric air cooling systems for buildings with thermoelectric material optimization," Energy, Elsevier, vol. 221(C).
    3. Cai, Yang & Wang, Wei-Wei & Liu, Cheng-Wei & Ding, Wen-Tao & Liu, Di & Zhao, Fu-Yun, 2020. "Performance evaluation of a thermoelectric ventilation system driven by the concentrated photovoltaic thermoelectric generators for green building operations," Renewable Energy, Elsevier, vol. 147(P1), pages 1565-1583.
    4. Zhao, Dongliang & Yin, Xiaobo & Xu, Jingtao & Tan, Gang & Yang, Ronggui, 2020. "Radiative sky cooling-assisted thermoelectric cooling system for building applications," Energy, Elsevier, vol. 190(C).
    5. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    6. Minseong Kim & Yong-Kwon Kang & Jaewon Joung & Jae-Weon Jeong, 2022. "Cooling Performance Prediction for Hydraulic Thermoelectric Radiant Cooling Panels with Experimental Validation," Sustainability, MDPI, vol. 14(23), pages 1-17, December.
    7. Kashif Irshad & Abdulmohsen Almalawi & Asif Irshad Khan & Md Mottahir Alam & Md. Hasan Zahir & Amjad Ali, 2020. "An IoT-Based Thermoelectric Air Management Framework for Smart Building Applications: A Case Study for Tropical Climate," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    8. Zuazua-Ros, Amaia & Martín-Gómez, César & Ibañez-Puy, Elia & Vidaurre-Arbizu, Marina & Gelbstein, Yaniv, 2019. "Investigation of the thermoelectric potential for heating, cooling and ventilation in buildings: Characterization options and applications," Renewable Energy, Elsevier, vol. 131(C), pages 229-239.
    9. Prieto, Alejandro & Knaack, Ulrich & Auer, Thomas & Klein, Tillmann, 2019. "COOLFACADE: State-of-the-art review and evaluation of solar cooling technologies on their potential for façade integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 395-414.
    10. Mohadeseh Seyednezhad & Hamidreza Najafi, 2021. "Solar-Powered Thermoelectric-Based Cooling and Heating System for Building Applications: A Parametric Study," Energies, MDPI, vol. 14(17), pages 1-17, September.
    11. Li, Hui & Ni, Long & Yao, Yang & Sun, Cheng, 2020. "Annual performance experiments of an earth-air heat exchanger fresh air-handling unit in severe cold regions: Operation, economic and greenhouse gas emission analyses," Renewable Energy, Elsevier, vol. 146(C), pages 25-37.
    12. Stanisław Lis & Jarosław Knaga & Sławomir Kurpaska & Stanisław Famielec & Piotr Łyszczarz & Marek Machaczka, 2024. "Optimizing Energy Efficiency in a Peltier-Module-Based Cooling Microunit through Selected Control Algorithms," Energies, MDPI, vol. 17(20), pages 1-22, October.
    13. Wenjie Zhang & Jiajun Zhang & Fengcheng Huang & Yuqiang Zhao & Yongheng Zhong, 2021. "Study of the Application Characteristics of Photovoltaic-Thermoelectric Radiant Windows," Energies, MDPI, vol. 14(20), pages 1-15, October.
    14. Chen, Lingen & Lorenzini, Giulio, 2023. "Heating load, COP and exergetic efficiency optimizations for TEG-TEH combined thermoelectric device with Thomson effect and external heat transfer," Energy, Elsevier, vol. 270(C).
    15. Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).
    16. Zhang, Yelin & Liu, Zhongbing & Wang, Pengcheng, 2020. "Evaluation of a stand-alone photovoltaic/thermal integrated thermoelectric water heating system," Renewable Energy, Elsevier, vol. 162(C), pages 1533-1553.
    17. Liu, Di & Zhao, Fu-Yun & Yang, Hongxing & Tang, Guang-Fa, 2015. "Theoretical and experimental investigations of thermoelectric heating system with multiple ventilation channels," Applied Energy, Elsevier, vol. 159(C), pages 458-468.
    18. Alejandro Prieto & Ulrich Knaack & Thomas Auer & Tillmann Klein, 2018. "Feasibility Study of Self-Sufficient Solar Cooling Façade Applications in Different Warm Regions," Energies, MDPI, vol. 11(6), pages 1-18, June.
    19. Ibáñez-Puy, Elia & Martín-Gómez, César & Bermejo-Busto, Javier & Zuazua-Ros, Amaia, 2018. "Thermal and energy performance assessment of a thermoelectric heat pump integrated in an adiabatic box," Applied Energy, Elsevier, vol. 228(C), pages 681-688.
    20. Sukjoon Oh & John F. Gardner, 2022. "Energy Consumption Analysis Using Measured Data from a Net-Zero Energy Commercial Building in a Cold and Dry Climate," Sustainability, MDPI, vol. 14(16), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6981-:d:1255052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.