IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6645-d656026.html
   My bibliography  Save this article

Study of the Application Characteristics of Photovoltaic-Thermoelectric Radiant Windows

Author

Listed:
  • Wenjie Zhang

    (School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Jiajun Zhang

    (China Unicom Consulting Design Research Institute Co., Ltd., Nanjing 210019, China)

  • Fengcheng Huang

    (School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Yuqiang Zhao

    (School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Yongheng Zhong

    (School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

Abstract

Through experiments and numerical simulation, this paper studies the related performance of a photovoltaic thermoelectric radiation cooling window structure, verifies the accuracy of the established solar thermoelectric radiation window calculation model, and analyzes the cooling performance of different parameters of thermoelectric sheet, radiation plate, and photovoltaic panel. On the basis of considering the relationship between the power generation and power consumption of the structure, the numerical calculation results show that the solar thermoelectric radiation window with non-transparent photovoltaic module (NTPV) has a total cooling capacity of 50.2 kWh, power consumption of 71.8 kWh, and power generation of 83.9 kWh from June to August. The solar thermoelectric radiation window with translucent photovoltaic module (STPV) has a total cooling capacity of 50.7 kWh, power consumption of 71.7 kWh, and power generation of 45.4 kWh from June to August. If the operation time of the thermoelectric module is limited, when the daily operation time of TEM is less than 8 h, the power generation of STPV can meet the power consumption demand of the thermoelectric radiation window from June to August.

Suggested Citation

  • Wenjie Zhang & Jiajun Zhang & Fengcheng Huang & Yuqiang Zhao & Yongheng Zhong, 2021. "Study of the Application Characteristics of Photovoltaic-Thermoelectric Radiant Windows," Energies, MDPI, vol. 14(20), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6645-:d:656026
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6645/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6645/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Wei & Zhou, Jinzhi & Hou, Jingxin & Chen, Chi & Ji, Jie, 2013. "Theoretical and experimental investigation on a thermoelectric cooling and heating system driven by solar," Applied Energy, Elsevier, vol. 107(C), pages 89-97.
    2. He, Wei & Su, Yuehong & Riffat, S.B. & Hou, JinXin & Ji, Jie, 2011. "Parametrical analysis of the design and performance of a solar heat pipe thermoelectric generator unit," Applied Energy, Elsevier, vol. 88(12), pages 5083-5089.
    3. Prieto, Alejandro & Knaack, Ulrich & Klein, Tillmann & Auer, Thomas, 2017. "25 Years of cooling research in office buildings: Review for the integration of cooling strategies into the building façade (1990–2014)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 89-102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke, Wei & Ji, Jie & Zhang, Chengyan & Wang, Chuyao & Xie, Hao & Tian, Xinyi, 2023. "A seasonal experimental study on a novel CdTe based multi-layer PV ventilated window system integrated with PCM under different operating modes," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Wei & Zhang, Gan & Zhang, Xingxing & Ji, Jie & Li, Guiqiang & Zhao, Xudong, 2015. "Recent development and application of thermoelectric generator and cooler," Applied Energy, Elsevier, vol. 143(C), pages 1-25.
    2. Prieto, Alejandro & Knaack, Ulrich & Auer, Thomas & Klein, Tillmann, 2019. "COOLFACADE: State-of-the-art review and evaluation of solar cooling technologies on their potential for façade integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 395-414.
    3. Ibrahim, Amin & Rahnamayan, Shahryar & Vargas Martin, Miguel & Yilbas, Bekir, 2014. "Multi-objective thermal analysis of a thermoelectric device: Influence of geometric features on device characteristics," Energy, Elsevier, vol. 77(C), pages 305-317.
    4. Stanisław Lis & Jarosław Knaga & Sławomir Kurpaska & Stanisław Famielec & Piotr Łyszczarz & Marek Machaczka, 2024. "Optimizing Energy Efficiency in a Peltier-Module-Based Cooling Microunit through Selected Control Algorithms," Energies, MDPI, vol. 17(20), pages 1-22, October.
    5. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Experimental Validation of Water Flow Glazing: Transient Response in Real Test Rooms," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    6. Duan, Mengfan & Sun, Hongli & Lin, Borong & Wu, Yifan, 2021. "Evaluation on the applicability of thermoelectric air cooling systems for buildings with thermoelectric material optimization," Energy, Elsevier, vol. 221(C).
    7. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    8. Chen, Lingen & Lorenzini, Giulio, 2023. "Heating load, COP and exergetic efficiency optimizations for TEG-TEH combined thermoelectric device with Thomson effect and external heat transfer," Energy, Elsevier, vol. 270(C).
    9. Lee, Junghun & Yoo, Seunghwan & Kim, Jonghun & Song, Doosam & Jeong, Hakgeun, 2018. "Improvements to the customer baseline load (CBL) using standard energy consumption considering energy efficiency and demand response," Energy, Elsevier, vol. 144(C), pages 1052-1063.
    10. Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).
    11. Zhang, Yelin & Liu, Zhongbing & Wang, Pengcheng, 2020. "Evaluation of a stand-alone photovoltaic/thermal integrated thermoelectric water heating system," Renewable Energy, Elsevier, vol. 162(C), pages 1533-1553.
    12. Sun, Zeyu & Luo, Ding & Wang, Ruochen & Li, Ying & Yan, Yuying & Cheng, Ziming & Chen, Jie, 2022. "Evaluation of energy recovery potential of solar thermoelectric generators using a three-dimensional transient numerical model," Energy, Elsevier, vol. 256(C).
    13. Liu, Di & Zhao, Fu-Yun & Yang, Hongxing & Tang, Guang-Fa, 2015. "Theoretical and experimental investigations of thermoelectric heating system with multiple ventilation channels," Applied Energy, Elsevier, vol. 159(C), pages 458-468.
    14. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    15. Alejandro Prieto & Ulrich Knaack & Thomas Auer & Tillmann Klein, 2018. "Feasibility Study of Self-Sufficient Solar Cooling Façade Applications in Different Warm Regions," Energies, MDPI, vol. 11(6), pages 1-18, June.
    16. Luo, Ding & Wang, Ruochen & Yu, Wei & Zhou, Weiqi, 2020. "Parametric study of a thermoelectric module used for both power generation and cooling," Renewable Energy, Elsevier, vol. 154(C), pages 542-552.
    17. Wang, Tian-Hu & Wang, Qiu-Hong & Leng, Chuan & Wang, Xiao-Dong, 2015. "Parameter analysis and optimal design for two-stage thermoelectric cooler," Applied Energy, Elsevier, vol. 154(C), pages 1-12.
    18. Yu, Li & Xi, Zhiyuan & Li, Shuang & Pang, Dan & Yan, Hongjie & Chen, Meijie, 2022. "All-day continuous electrical power generator by solar heating and radiative cooling from the sky," Applied Energy, Elsevier, vol. 322(C).
    19. Prieto, Alejandro & Knaack, Ulrich & Auer, Thomas & Klein, Tillmann, 2017. "Solar coolfacades: Framework for the integration of solar cooling technologies in the building envelope," Energy, Elsevier, vol. 137(C), pages 353-368.
    20. Al-Nimr, Moh'd A. & Tashtoush, Bourhan M. & Jaradat, Ahmad A., 2015. "Modeling and simulation of thermoelectric device working as a heat pump and an electric generator under Mediterranean climate," Energy, Elsevier, vol. 90(P2), pages 1239-1250.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6645-:d:656026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.