IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i11p4851-4862.html
   My bibliography  Save this article

A real option-based simulation model to evaluate investments in pump storage plants

Author

Listed:
  • Muche, Thomas

Abstract

Investments in pump storage plants are expected to grow especially due to their ability to store an excess of supply from wind power plants. In order to evaluate these investments correctly the peculiarities of pump storage plants and the characteristics of liberalized power markets have to be considered. The main characteristics of power markets are the strong power price volatility and the occurrence of prices spikes. In this article a valuation model is developed capturing these aspects using power price simulation, optimization of unit commitment and capital market theory. This valuation model is able to value a future price-based unit commitment planning that corresponds to future scope of actions also called real options. The resulting real option value for the pump storage plant is compared with the traditional net present value approach. Because this approach is not able to evaluate scope of actions correctly it results in strongly smaller investment values and forces wrong investment decisions.

Suggested Citation

  • Muche, Thomas, 2009. "A real option-based simulation model to evaluate investments in pump storage plants," Energy Policy, Elsevier, vol. 37(11), pages 4851-4862, November.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:11:p:4851-4862
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00459-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huisman, Ronald & Huurman, Christian & Mahieu, Ronald, 2007. "Hourly electricity prices in day-ahead markets," Energy Economics, Elsevier, vol. 29(2), pages 240-248, March.
    2. Christoph Weber, 2005. "Uncertainty in the Electric Power Industry," International Series in Operations Research and Management Science, Springer, number 978-0-387-23048-1, April.
    3. Crespo Cuaresma, Jesús & Hlouskova, Jaroslava & Kossmeier, Stephan & Obersteiner, Michael, 2004. "Forecasting electricity spot-prices using linear univariate time-series models," Applied Energy, Elsevier, vol. 77(1), pages 87-106, January.
    4. Mount, Timothy D. & Ning, Yumei & Cai, Xiaobin, 2006. "Predicting price spikes in electricity markets using a regime-switching model with time-varying parameters," Energy Economics, Elsevier, vol. 28(1), pages 62-80, January.
    5. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    6. Benitez, Liliana E. & Benitez, Pablo C. & van Kooten, G. Cornelis, 2008. "The economics of wind power with energy storage," Energy Economics, Elsevier, vol. 30(4), pages 1973-1989, July.
    7. Kanamura, Takashi & Ohashi, Kazuhiko, 2007. "A structural model for electricity prices with spikes: Measurement of spike risk and optimal policies for hydropower plant operation," Energy Economics, Elsevier, vol. 29(5), pages 1010-1032, September.
    8. Cavallaro, Fausto & Ciraolo, Luigi, 2005. "A multicriteria approach to evaluate wind energy plants on an Italian island," Energy Policy, Elsevier, vol. 33(2), pages 235-244, January.
    9. Laurikka, Harri, 2006. "Option value of gasification technology within an emissions trading scheme," Energy Policy, Elsevier, vol. 34(18), pages 3916-3928, December.
    10. Vieira, F. & Ramos, H.M., 2008. "Hybrid solution and pump-storage optimization in water supply system efficiency: A case study," Energy Policy, Elsevier, vol. 36(11), pages 4142-4148, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Xian & Delarue, Erik & D'haeseleer, William & Glachant, Jean-Michel, 2011. "A novel business model for aggregating the values of electricity storage," Energy Policy, Elsevier, vol. 39(3), pages 1575-1585, March.
    2. Steffen, Bjarne & Weber, Christoph, 2016. "Optimal operation of pumped-hydro storage plants with continuous time-varying power prices," European Journal of Operational Research, Elsevier, vol. 252(1), pages 308-321.
    3. Muche, Thomas, 2014. "Optimal operation and forecasting policy for pump storage plants in day-ahead markets," Applied Energy, Elsevier, vol. 113(C), pages 1089-1099.
    4. Gaudard, Ludovic, 2015. "Pumped-storage project: A short to long term investment analysis including climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 91-99.
    5. Rious, Vincent & Perez, Yannick, 2014. "Review of supporting scheme for island powersystem storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 754-765.
    6. Feldman, David & Jones-Albertus, Rebecca & Margolis, Robert, 2020. "Quantifying the impact of R&D on PV project financing costs," Energy Policy, Elsevier, vol. 142(C).
    7. David Wozabal & Christoph Graf & David Hirschmann, 2016. "The effect of intermittent renewables on the electricity price variance," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 687-709, July.
    8. Locatelli, Giorgio & Invernizzi, Diletta Colette & Mancini, Mauro, 2016. "Investment and risk appraisal in energy storage systems: A real options approach," Energy, Elsevier, vol. 104(C), pages 114-131.
    9. Kroniger, Daniel & Madlener, Reinhard, 2014. "Hydrogen storage for wind parks: A real options evaluation for an optimal investment in more flexibility," Applied Energy, Elsevier, vol. 136(C), pages 931-946.
    10. Abadie, Luis M. & Goicoechea, Nestor, 2022. "Optimal management of a mega pumped hydro storage system under stochastic hourly electricity prices in the Iberian Peninsula," Energy, Elsevier, vol. 252(C).
    11. Keles, Dogan & Scelle, Jonathan & Paraschiv, Florentina & Fichtner, Wolf, 2016. "Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks," Applied Energy, Elsevier, vol. 162(C), pages 218-230.
    12. Locatelli, Giorgio & Mancini, Mauro & Lotti, Giovanni, 2020. "A simple-to-implement real options method for the energy sector," Energy, Elsevier, vol. 197(C).
    13. Lai, Chun Sing & Locatelli, Giorgio, 2021. "Valuing the option to prototype: A case study with Generation Integrated Energy Storage," Energy, Elsevier, vol. 217(C).
    14. Mesias Alfeus & James Collins, 2023. "A novel stochastic modeling framework for coal production and logistics through options pricing analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-19, December.
    15. Connolly, D. & Lund, H. & Finn, P. & Mathiesen, B.V. & Leahy, M., 2011. "Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage," Energy Policy, Elsevier, vol. 39(7), pages 4189-4196, July.
    16. Yongma Moon, 2014. "Optimal Time to Invest Energy Storage System under Uncertainty Conditions," Energies, MDPI, vol. 7(4), pages 1-19, April.
    17. Daniel Ziegler & Katrin Schmitz & Christoph Weber, 2012. "Optimal electricity generation portfolios," Computational Management Science, Springer, vol. 9(3), pages 381-399, August.
    18. Zvonimir Glasnovic & Karmen Margeta & Visnja Omerbegovic, 2013. "Artificial Water Inflow Created by Solar Energy for Continuous Green Energy Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2303-2323, May.
    19. Maurizio Sibilla & Esra Kurul, 2023. "Towards Social Understanding of Energy Storage Systems—A Perspective," Energies, MDPI, vol. 16(19), pages 1-11, September.
    20. He, YongXiu & Liu, Yang & Li, MoXing & Zhang, Yan, 2022. "Benefit evaluation and mechanism design of pumped storage plants under the background of power market reform - A case study of China," Renewable Energy, Elsevier, vol. 191(C), pages 796-806.
    21. Moon, Yongma & Baran, Mesut, 2018. "Economic analysis of a residential PV system from the timing perspective: A real option model," Renewable Energy, Elsevier, vol. 125(C), pages 783-795.
    22. McPherson, Madeleine & Tahseen, Samiha, 2018. "Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure," Energy, Elsevier, vol. 145(C), pages 856-870.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    2. Christensen, T.M. & Hurn, A.S. & Lindsay, K.A., 2012. "Forecasting spikes in electricity prices," International Journal of Forecasting, Elsevier, vol. 28(2), pages 400-411.
    3. Raviv, Eran & Bouwman, Kees E. & van Dijk, Dick, 2015. "Forecasting day-ahead electricity prices: Utilizing hourly prices," Energy Economics, Elsevier, vol. 50(C), pages 227-239.
    4. Andreas Gerster, 2016. "Negative price spikes at power markets: the role of energy policy," Journal of Regulatory Economics, Springer, vol. 50(3), pages 271-289, December.
    5. Carlo Fezzi & Derek Bunn, 2010. "Structural Analysis of Electricity Demand and Supply Interactions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(6), pages 827-856, December.
    6. Timothy Christensen & Stan Hurn & Kenneth Lindsay, 2009. "It Never Rains but it Pours: Modeling the Persistence of Spikes in Electricity Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-48.
    7. Ergemen, Yunus Emre & Haldrup, Niels & Rodríguez-Caballero, Carlos Vladimir, 2016. "Common long-range dependence in a panel of hourly Nord Pool electricity prices and loads," Energy Economics, Elsevier, vol. 60(C), pages 79-96.
    8. Godin, Frédéric & Ibrahim, Zinatu, 2021. "An analysis of electricity congestion price patterns in North America," Energy Economics, Elsevier, vol. 102(C).
    9. Huisman, Ronald & Mahieu, Ronald & Schlichter, Felix, 2009. "Electricity portfolio management: Optimal peak/off-peak allocations," Energy Economics, Elsevier, vol. 31(1), pages 169-174, January.
    10. Michail I. Seitaridis & Nikolaos S. Thomaidis & Pandelis N. Biskas, 2021. "Fundamental Responsiveness in European Electricity Prices," Energies, MDPI, vol. 14(22), pages 1-14, November.
    11. Le Pen, Yannick & Sévi, Benoît, 2010. "Volatility transmission and volatility impulse response functions in European electricity forward markets," Energy Economics, Elsevier, vol. 32(4), pages 758-770, July.
    12. Gerster, Andreas, 2016. "Negative price spikes at power markets: The role of energy policy," Ruhr Economic Papers 636, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    13. Antonio Bello & Javier Reneses & Antonio Muñoz, 2016. "Medium-Term Probabilistic Forecasting of Extremely Low Prices in Electricity Markets: Application to the Spanish Case," Energies, MDPI, vol. 9(3), pages 1-27, March.
    14. Frömmel, Michael & Han, Xing & Kratochvil, Stepan, 2014. "Modeling the daily electricity price volatility with realized measures," Energy Economics, Elsevier, vol. 44(C), pages 492-502.
    15. Adam Clements & Joanne Fuller & Stan Hurn, 2013. "Semi-parametric Forecasting of Spikes in Electricity Prices," The Economic Record, The Economic Society of Australia, vol. 89(287), pages 508-521, December.
    16. Katarzyna Maciejowska & Rafal Weron, 2013. "Forecasting of daily electricity spot prices by incorporating intra-day relationships: Evidence form the UK power market," HSC Research Reports HSC/13/01, Hugo Steinhaus Center, Wroclaw University of Technology, revised 15 Apr 2013.
    17. Mayer, Klaus & Trück, Stefan, 2018. "Electricity markets around the world," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 77-100.
    18. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601, December.
    19. Clements, A.E. & Herrera, R. & Hurn, A.S., 2015. "Modelling interregional links in electricity price spikes," Energy Economics, Elsevier, vol. 51(C), pages 383-393.
    20. Kadir Özen & Dilem Yıldırım, 2021. "Application of Bagging in Day-Ahead Electricity Price Forecasting and Factor Augmentation," ERC Working Papers 2101, ERC - Economic Research Center, Middle East Technical University, revised Apr 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:11:p:4851-4862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.