IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6840-d1249100.html
   My bibliography  Save this article

Comparative Evaluation of PSA, PVSA, and Twin PSA Processes for Biogas Upgrading: The Purity, Recovery, and Energy Consumption Dilemma

Author

Listed:
  • Ayub Golmakani

    (Centre for Renewable and Low Carbon Energy, Cranfield University, Bedford MK43 0AL, UK)

  • Basil Wadi

    (Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada)

  • Vasilije Manović

    (Centre for Renewable and Low Carbon Energy, Cranfield University, Bedford MK43 0AL, UK)

  • Seyed Ali Nabavi

    (Centre for Renewable and Low Carbon Energy, Cranfield University, Bedford MK43 0AL, UK)

Abstract

The current challenges of commercial cyclic adsorption processes for biogas upgrading are associated with either high energy consumption or low recovery. To address these challenges, this work evaluates the performance of a range of configurations for biogas separations, including pressure swing adsorption (PSA), pressure vacuum swing adsorption (PVSA), and twin double-bed PSA, by dynamic modelling. Moreover, a sensitivity analysis was performed to explore the effect of various operating conditions, including adsorption time, purge-to-feed ratio, biogas feed temperature, and vacuum level, on recovery and energy consumption. It was found that the required energy for a twin double-bed PSA to produce biomethane with 87% purity is 903 kJ/kg CH 4 with 90% recovery, compared to 961 kJ/kg CH 4 and 76% recovery for a PVSA process. With respect to minimum purity requirements, increasing product purity from 95.35 to 99.96% resulted in a 32% increase in energy demand and a 23% drop in recovery, illustrating the degree of loss in process efficiency and the costly trade-off to produce ultra-high-purity biomethane. It was concluded that in processes with moderate vacuum requirements (>0.5 bar), a PVSA should be utilised when a high purity biomethane product is desirable. On the other hand, to minimise CH 4 loss and enhance recovery, a twin double-bed PSA should be employed.

Suggested Citation

  • Ayub Golmakani & Basil Wadi & Vasilije Manović & Seyed Ali Nabavi, 2023. "Comparative Evaluation of PSA, PVSA, and Twin PSA Processes for Biogas Upgrading: The Purity, Recovery, and Energy Consumption Dilemma," Energies, MDPI, vol. 16(19), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6840-:d:1249100
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6840/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6840/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Piotr Sulewski & Wiktor Ignaciuk & Magdalena Szymańska & Adam Wąs, 2023. "Development of the Biomethane Market in Europe," Energies, MDPI, vol. 16(4), pages 1-34, February.
    2. Olajire, Abass A., 2010. "CO2 capture and separation technologies for end-of-pipe applications – A review," Energy, Elsevier, vol. 35(6), pages 2610-2628.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kobayashi, Makoto & Akiho, Hiroyuki & Nakao, Yoshinobu, 2015. "Performance evaluation of porous sodium aluminate sorbent for halide removal process in oxy-fuel IGCC power generation plant," Energy, Elsevier, vol. 92(P3), pages 320-327.
    2. Zhao, Zhijun & Xing, Xiao & Tang, Zhigang & Zheng, Yong & Fei, Weiyang & Liang, Xiangfeng & Ataeivarjovi, E. & Guo, Dong, 2018. "Experiment and simulation study of CO2 solubility in dimethyl carbonate, 1-octyl-3-methylimidazolium tetrafluoroborate and their mixtures," Energy, Elsevier, vol. 143(C), pages 35-42.
    3. Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
    4. Dindi, Abdallah & Quang, Dang Viet & Abu-Zahra, Mohammad R.M., 2015. "Simultaneous carbon dioxide capture and utilization using thermal desalination reject brine," Applied Energy, Elsevier, vol. 154(C), pages 298-308.
    5. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    6. Budzianowski, Wojciech Marcin, 2011. "Can ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity contribute to solving Poland’s carbon capture and sequestration dilemmas?," Energy, Elsevier, vol. 36(11), pages 6318-6325.
    7. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    8. Ashouri, Mahyar & Chhokar, Callum & Bahrami, Majid, 2024. "A novel microgroove-based absorber for sorption heat transformation systems: Analytical modeling and experimental investigation," Energy, Elsevier, vol. 307(C).
    9. Chen, Zhaoyang & Fang, Jie & Xu, Chungang & Xia, Zhiming & Yan, Kefeng & Li, Xiaosen, 2020. "Carbon dioxide hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas by a novel hydrate heat-mass coupling method," Energy, Elsevier, vol. 199(C).
    10. Ronald Ssebadduka & Kyuro Sasaki & Yuichi Sugai, 2020. "An Analysis of the Possible Financial Savings of a Carbon Capture Process through Carbon Dioxide Absorption and Geological Dumping," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 266-270.
    11. Li, Xiaoqiang & Ding, Yudong & Guo, Liheng & Liao, Qiang & Zhu, Xun & Wang, Hong, 2019. "Non-aqueous energy-efficient absorbents for CO2 capture based on porous silica nanospheres impregnated with amine," Energy, Elsevier, vol. 171(C), pages 109-119.
    12. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J. & Haque, A., 2013. "Sub- and super-critical carbon dioxide permeability of wellbore materials under geological sequestration conditions: An experimental study," Energy, Elsevier, vol. 54(C), pages 231-239.
    13. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    14. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I., 2012. "A study of influence of acoustic excitation on carbon dioxide capture by a droplet," Energy, Elsevier, vol. 37(1), pages 311-321.
    15. Zhang, Hao & Lai, Yanhua & Yang, Xiao & Li, Chang & Dong, Yong, 2022. "Non-evaporative solvent extraction technology applied to water and heat recovery from low-temperature flue gas: Parametric analysis and feasibility evaluation," Energy, Elsevier, vol. 244(PB).
    16. Mohammad Amin Zamiri & Ali Kargari & Hamidreza Sanaeepur, 2015. "Ethylene vinyl acetate/poly(ethylene glycol) blend membranes for CO 2 /N 2 separation," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(5), pages 668-681, October.
    17. Zhang, Minkai & Guo, Yincheng, 2017. "Regeneration energy analysis of NH3-based CO2 capture process integrated with a flow-by capacitive ion separation device," Energy, Elsevier, vol. 125(C), pages 178-185.
    18. Duma, Daniel & Pollitt, Michael G. & Covatariu, Andrei & Giulietti, Monica, 2024. "Defining and measuring active distribution system operators for the electricity and natural gas sectors," Utilities Policy, Elsevier, vol. 87(C).
    19. Hwang, Kyung-Ran & Park, Jin-Woo & Lee, Sung-Wook & Hong, Sungkook & Lee, Chun-Boo & Oh, Duck-Kyu & Jin, Min-Ho & Lee, Dong-Wook & Park, Jong-Soo, 2015. "Catalytic combustion of the retentate gas from a CO2/H2 separation membrane reactor for further CO2 enrichment and energy recovery," Energy, Elsevier, vol. 90(P1), pages 1192-1198.
    20. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2011. "A theoretical analysis of the capture of greenhouse gases by single water droplet at atmospheric and elevated pressures," Applied Energy, Elsevier, vol. 88(12), pages 5120-5130.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6840-:d:1249100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.