IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6821-d1248109.html
   My bibliography  Save this article

Mechanical and Acoustic Response of Low-Permeability Sandstone under Multilevel Cyclic Loading-Unloading Stress Paths

Author

Listed:
  • Hongying Tan

    (State Key Laboratory of Coal Mine Disaster and Control, Chongqing University, Chongqing 400044, China
    State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China)

  • Hejuan Liu

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xilin Shi

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Hongling Ma

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xiaosong Qiu

    (Key Laboratory of Underground Storage of Oil and Gas Engineer of China National Petroleum Corporation, Langfang 065007, China)

  • Yintong Guo

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Shengnan Ban

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Low-permeability sandstone reservoirs have been widely used as a gas storage medium worldwide. Compared with the high porosity and high permeability of sandstone, low-permeability sandstone may present different mechanical (deformation, damage or failure) and acoustic responses under cyclic loading-unloading processes caused by the high-rate injection–production of underground gas storage. In this paper, multistage triaxial loading–unloading tests with a continuously increased upper limit of stress were carried out on low-permeability sandstone under six different confining pressures. The results showed that the superposition of stress–strain curves become much denser in the process of each level of stress. Based on the variation of the elastic modulus of low-permeability sandstone under alternating loads, the mechanical behavior of low-permeability sandstone under cyclic loading is divided into three stages: cyclic hardening, stability and cyclic softening. According to the evolution of acoustic emission (AE) signal parameters, AE counts appear intensively at the initial stage of each level of stress and then gradually stabilize. The peak frequency presents the zonal distribution, which is divided into low-frequency, intermediate-frequency and high-frequency zones. Low confining pressure leads to a small b-value. The RA–AF distribution implies that the mixed tensile–shear cracks are continuously generated in low-permeability sandstone during the cyclic loading process, and the shear cracks are more obviously developed.

Suggested Citation

  • Hongying Tan & Hejuan Liu & Xilin Shi & Hongling Ma & Xiaosong Qiu & Yintong Guo & Shengnan Ban, 2023. "Mechanical and Acoustic Response of Low-Permeability Sandstone under Multilevel Cyclic Loading-Unloading Stress Paths," Energies, MDPI, vol. 16(19), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6821-:d:1248109
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6821/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6821/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahmoodpour, Saeed & Singh, Mrityunjay & Bär, Kristian & Sass, Ingo, 2022. "Thermo-hydro-mechanical modeling of an enhanced geothermal system in a fractured reservoir using carbon dioxide as heat transmission fluid- A sensitivity investigation," Energy, Elsevier, vol. 254(PB).
    2. Song, Rui & Wang, Yao & Tang, Yu & Jiajun peng, & Liu, Jianjun & Yang, Chunhe, 2022. "3D Printing of natural sandstone at pore scale and comparative analysis on micro-structure and single/two-phase flow properties," Energy, Elsevier, vol. 261(PA).
    3. Xiaosong Qiu & Hejuan Liu & Mancang Liu & Haijun Mao & Duocai Wang & Qiqi Ying & Shengnan Ban, 2023. "Pore Structure Evolution in Sandstone of Underground Gas Storage during Cyclic Injection and Production Based on Nuclear Magnetic Resonance Technology," Energies, MDPI, vol. 16(5), pages 1-17, February.
    4. Mahmoodpour, Saeed & Singh, Mrityunjay & Turan, Aysegul & Bär, Kristian & Sass, Ingo, 2022. "Simulations and global sensitivity analysis of the thermo-hydraulic-mechanical processes in a fractured geothermal reservoir," Energy, Elsevier, vol. 247(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saeed Mahmoodpour & Mrityunjay Singh & Ramin Mahyapour & Sri Kalyan Tangirala & Kristian Bär & Ingo Sass, 2022. "Numerical Simulation of Thermo-Hydro-Mechanical Processes at Soultz-sous-Forêts," Energies, MDPI, vol. 15(24), pages 1-21, December.
    2. Martina Tuschl & Tomislav Kurevija, 2023. "Revitalization Modelling of a Mature Oil Field with Bottom-Type Aquifer into Geothermal Resource—Reservoir Engineering and Techno-Economic Challenges," Energies, MDPI, vol. 16(18), pages 1-27, September.
    3. Kexun Wang & Tishi Huang & Wenke Zhang & Zhiqiang Zhang & Xueqing Ma & Leyao Zhang, 2023. "An Analysis of the Heat Transfer Characteristics of Medium-Shallow Borehole Ground Heat Exchangers with Various Working Fluids," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    4. Xiang Gao & Tailu Li & Yao Zhang & Xiangfei Kong & Nan Meng, 2022. "A Review of Simulation Models of Heat Extraction for a Geothermal Reservoir in an Enhanced Geothermal System," Energies, MDPI, vol. 15(19), pages 1-23, September.
    5. Yuhang Wang & Mousa HosseiniMehr & Arjan Marelis & Hadi Hajibeygi, 2023. "A Generic Framework for Multiscale Simulation of High and Low Enthalpy Fractured Geothermal Reservoirs under Varying Thermodynamic Conditions," Energies, MDPI, vol. 16(2), pages 1-16, January.
    6. Wanli Gao & Jingtao Zhao & Suping Peng, 2022. "UNet–Based Temperature Simulation of Hot Dry Rock in the Gonghe Basin," Energies, MDPI, vol. 15(17), pages 1-17, August.
    7. Wang, Anlun & Chen, Yinghe & Wei, Jianguang & Li, Jiangtao & Zhou, Xiaofeng, 2023. "Experimental study on the mechanism of five point pattern refracturing for vertical & horizontal wells in low permeability and tight oil reservoirs," Energy, Elsevier, vol. 272(C).
    8. Rui Song & Yaojiang Duan & Jianjun Liu & Yujia Song, 2022. "Numerical Modeling on Dissociation and Transportation of Natural Gas Hydrate Considering the Effects of the Geo-Stress," Energies, MDPI, vol. 15(24), pages 1-22, December.
    9. Mahmoodpour, Saeed & Singh, Mrityunjay & Bär, Kristian & Sass, Ingo, 2022. "Thermo-hydro-mechanical modeling of an enhanced geothermal system in a fractured reservoir using carbon dioxide as heat transmission fluid- A sensitivity investigation," Energy, Elsevier, vol. 254(PB).
    10. Zhang, Bo & Guo, Tiankui & Qu, Zhanqing & Wang, Jiwei & Chen, Ming & Liu, Xiaoqiang, 2023. "Numerical simulation of fracture propagation and production performance in a fractured geothermal reservoir using a 2D FEM-based THMD coupling model," Energy, Elsevier, vol. 273(C).
    11. Cao, Meng & Sharma, Mukul M., 2023. "Effect of fracture geometry, topology and connectivity on energy recovery from enhanced geothermal systems," Energy, Elsevier, vol. 282(C).
    12. Thomas Heinze & Nicola Pastore, 2023. "Velocity-dependent heat transfer controls temperature in fracture networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Rong-Chen Tong & He-Juan Liu & Yu-Jia Song & Li-Huan Xie & Sheng-Nan Ban, 2022. "Permeability and Mechanical Response of Granite after Thermal and CO 2 Bearing Fluid Hydro-Chemical Stimulation," Energies, MDPI, vol. 15(21), pages 1-17, November.
    14. Hai, Tao & Zoghi, Mohammad & Abed, Hooman & Chauhan, Bhupendra Singh & Ahmed, Ahmed Najat, 2023. "Exergy-economic study and multi-objective optimization of a geothermal-based combined organic flash cycle and PEMFC for poly-generation purpose," Energy, Elsevier, vol. 268(C).
    15. Wei, Jianguang & Li, Jiangtao & Zhang, Ao & Shang, Demiao & Zhou, Xiaofeng & Niu, Yintao, 2023. "Influence of shale bedding on development of microscale pores and fractures," Energy, Elsevier, vol. 282(C).
    16. Wei, Jianguang & Liang, Shuang & Zhang, Dong & Li, Jiangtao & Zhou, Runnan, 2023. "Frozen core experimental study on oil-water distribution characteristics at different stages of water flooding in low permeability oil reservoirs," Energy, Elsevier, vol. 278(PB).
    17. Li, Jiangtao & Zhou, Xiaofeng & Liu, Xibao & Gayubov, Abdumalik & Shamil, Sultanov, 2023. "Cross-scale diffusion characteristics in microscale fractures of tight and shale gas reservoirs considering real gas – mixture – body diffusion – water film coupling," Energy, Elsevier, vol. 283(C).
    18. Singh, Mrityunjay & Mahmoodpour, Saeed & Ershadnia, Reza & Soltanian, Mohamad Reza & Sass, Ingo, 2023. "Comparative study on heat extraction from Soultz-sous-Forêts geothermal field using supercritical carbon dioxide and water as the working fluid," Energy, Elsevier, vol. 266(C).
    19. Rui Song & Yu Tang & Yao Wang & Ruiyang Xie & Jianjun Liu, 2022. "Pore-Scale Numerical Simulation of CO 2 –Oil Two-Phase Flow: A Multiple-Parameter Analysis Based on Phase-Field Method," Energies, MDPI, vol. 16(1), pages 1-24, December.
    20. Li, Shijie & Liu, Jie & Huang, Wanying & Zhang, Chenghang, 2024. "Numerical simulation of the thermo-hydro-chemical coupling in enhanced geothermal systems: Impact of SiO2 dissolution/precipitation in matrix and fractures," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6821-:d:1248109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.